ON THE NUMBER OF CERTAIN GALOIS EXTENSIONS
OF LOCAL FIELDS

DA-SHENG WEI AND CHUN-GANG JI

(Communicated by Ken Ono)

Abstract. In this paper, we will calculate the number of Galois extensions of local fields with Galois group A_n or S_n.

1. Introduction

Let p be a prime, F a finite extension of p-adic field \mathbb{Q}_p with $[F : \mathbb{Q}_p] = m$. Let k be its residue field with $[k : \mathbb{Z}/p\mathbb{Z}] = f$. It’s easy to see that $f|m$. Let π be a uniformizer of F and e the absolute ramification index of F/\mathbb{Q}_p. Then $m = ef$. In this paper let μ_l denote the set of l-th roots of unity. All notations are standard if not explained.

Since the number of the extensions of local fields with a given degree inside the fixed algebraic closure is finite, see [2], one can ask for a formula that gives the number of extensions of a given degree. Krasner [1] gave such a formula, and Serre [6] also computed the number of extensions using a different method. Pauli and Roblot [3] gave the third proof for that formula. Similarly one can also ask for a formula that gives the number of Galois extensions of a given degree. In particular, it is possible to ask for a formula that gives the number of the Galois extensions with the prescribed finite Galois group G. We denote this number by $\nu(F, G)$. If G is a p-group with $\mu_p \not\subset F$, Šafarevič [4] gave an explicit formula for the number of the G-extensions over F:

$$\nu(F, G) = \frac{1}{|\text{Aut}(G)|} \left(\frac{|G|}{p^d} \right)^{m+1} \prod_{i=1}^{d-1} \left(p^{m+1} - p^i \right),$$

where d is the minimal number of generators of G. If G is a p-group, and $\mu_p \subset F$, Yamagishi [7] obtained a formula for $\nu(F, G)$.

In this paper, we will calculate the number of S_n-extensions and A_n-extensions over F, where S_n is the n-th symmetric group and A_n is the n-th alternating group.

The cases for $n \geq 5$ that are quickly dismissed as S_n and A_n are not solvable in these cases, and the Galois groups of extensions of local fields are always solvable. So we only need to handle the remaining cases, $n \leq 4$.

Received by the editors June 13, 2006.

2000 Mathematics Subject Classification. Primary 11S15, 11S20.

Key words and phrases. Local fields, Galois closure, ramified extensions.

This work was partially supported by grants #10171046 and #10201013 from NNSF of China and Jiangsu planned projects for postdoctoral research funds.

©2007 American Mathematical Society

3041
Theorem 1.1. Let F be a finite extension over \mathbb{Q}_p with $[F : \mathbb{Q}_p] = m$, $\nu(F,G)$ the number of the Galois extensions K/F with $\text{Gal}(K/F) = G$.

(1) Suppose the prime $p \neq 3$; then

$$\nu(F, S_3) = \begin{cases} 0 & \text{if } \mu_3 \subset F, \\ 3 & \text{if } \mu_3 \not\subset F. \end{cases}$$

(2) Suppose $p = 3$; then

$$\nu(F, S_3) = \begin{cases} 3^{m+1} - 3 & \text{if } \mu_3 \subset F, \\ 3^m + \frac{3^{m+1}}{2} - \frac{3}{2} & \text{if } \mu_3 \not\subset F. \end{cases}$$

Theorem 1.2. Let F be a finite extension over \mathbb{Q}_p with $[F : \mathbb{Q}_p] = m$, $\nu(F,G)$ the number of the Galois extensions K/F with $\text{Gal}(K/F) = G$.

(1) Suppose the prime $p \geq 3$; then

$$\nu(F, S_4) = \nu(F, A_4) = 0.$$

(2) Suppose $p = 2$; then

$$\nu(F, A_4) = \begin{cases} 2^m - 1/3 & \text{if } \mu_3 \subset F, \\ (2^m - 1)/3 & \text{if } \mu_3 \not\subset F; \end{cases}$$

$$\nu(F, S_4) = \begin{cases} 0 & \text{if } \mu_3 \subset F, \\ 2^{m+1} - 1 & \text{if } \mu_3 \not\subset F \text{ and } m \text{ is even and } f = 1, \\ 2^m - 1 & \text{otherwise}. \end{cases}$$

2. Some lemmas

The number of S_2-extensions and A_3-extensions of local fields is specified by well-known results of local class field theory. So we only need to calculate the number of Galois extensions over F with Galois group S_3, S_4 and A_4. The following lemma plays an important role in our calculation.

Lemma 1. Let K be a Galois extension over F with the Galois group G. For any subgroup A of G, let F_A be the field fixed by A. Then the Galois closure $\text{cl}(F_A)$ of F_A is a subfield of K and $\text{Gal}(K/\text{cl}(F_A)) = \bigcap_{g \in G} gA^{-1}$.

We can get some Galois extensions from some non-Galois extensions by taking their Galois closure. For example, if $G = S_3$, D_8, A_4 and S_4, we can choose A to be isomorphic to $\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/3\mathbb{Z}$ and S_3, which is the non-normal subgroup of G respectively, and where D_8 is the 2-sylow subgroup of S_4. By the above lemma, the Galois extensions of F with Galois group S_3 can be gotten by the Galois closure of extensions of degree 3 of F, and the Galois extensions of F with Galois group D_8, A_4 and S_4 can be gotten by the Galois closure of extensions of degree 4 of F.

Let $M(n)$ denote the set of all extensions of degree n of F. Let $Ab(n)$ denote the set of abelian extensions of degree n of F. Also, let $M(G)$ denote the set of Galois extensions of F with the Galois group G. Let K be the Galois closure of an extension of degree n of F. The Galois group $\text{Gal}(K/F)$ is a subgroup of S_n. Obviously the order of $\text{Gal}(K/F)$ must be divided by n. So there are the following two maps:

$$f : M(3) \to Ab(3) \cup M(S_3)$$
and
\[g : \ M(4) \rightarrow Ab(4) \cup M(D_8) \cup M(A_4) \cup M(S_4) \]
by
\[L \rightarrow cl(L). \]
The two maps are surjective. Any inverse image \(L \) of an element \(K \) in \(M(G) \)
is a subfield of \(K \), and \(L \) is not a Galois extension of \(F \) if \(G \) is not an abelian

\[\text{group}. \] In these cases, the Galois group \(\text{Gal}(K/L) \) is not a normal subgroup of \(G \).
For \(G = S_3, D_8, A_4 \) and \(S_4 \), we consider respectively the number of non-normal subgroups isomorphic to \(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/3\mathbb{Z} \) and \(S_3 \). The subgroups are non-normal except there is an order-2 normal subgroup in \(D_8 \). So the number of inverse images of any element in \(M(S_3), M(D_8), M(A_4) \) and \(M(S_4) \) are 3, 4, 4, 4 respectively. Let \(|S| \) denote cardinality of a finite set \(S \). Let \(\nu(F,G) \) denote the number of \(M(G) \). So there is the following result.

Lemma 2.
\[|M(3)| = |Ab(3)| + 3\nu(F,S_3), \]
\[|M(4)| = |Ab(4)| + 4\nu(F,D_8) + 4\nu(F,A_4) + 4\nu(F,S_4). \]

3. **The proof of Theorem 1.1**

In the following, we denote \(m = [F: \mathbb{Q}_p] \), and \(e \) is the absolute ramification index of \(F \) and \(q = p^e \) is the number of elements of the residue field of \(F \).

Proof. (1) For \(p \neq 3 \),

\[M(3) = \{ K \mid [K : F] = 3, \ K \text{ is a tamely ramified extension of } F \}. \]

(i) If 3rd roots of unity are contained in \(F \), then \(M(3) = Ab(3) \). By Lemma 2

\[\nu(F,S_3) = 0. \]

(ii) If 3rd roots of unity are not contained in \(F \), then \(|M(3)| = 10, |Ab(3)| = 1. \)

By Lemma 2

\[\nu(F,S_3) = 3. \]

(2) For \(p = 3 \), by Krasner’s theorem [3],

\[|M(3)| = 3q^e + 6(q-1)(\sum_{a=0}^{e-1} q^a) + 1 = 9q^e - 5. \]

Suppose \(\mu_3 \nsubseteq F \); then

\[|Ab(3)| = \frac{1}{2}(\frac{3}{3})^{m+1}(3^{m+1} - 1) = \frac{3^{m+1} - 1}{2} = \frac{3q^e - 1}{2}. \]

Suppose \(\mu_3 \subseteq F \); then

\[|Ab(3)| = 4. \]

By Lemma 2

\[\nu(F,S_3) = \begin{cases} \frac{5q^e - 3}{2} & \text{if } \mu_3 \nsubseteq F, \\ 3q^e - 3 & \text{if } \mu_3 \subseteq F. \end{cases} \]

\]
4. The proof of Theorem 1.2

First we give some propositions.

Proposition 4.1. Let the prime \(p \geq 3 \). Then
\[
\nu(F, S_4) = \nu(F, A_4) = 0.
\]

Proof. Suppose \(K \) is a Galois extension over \(F \) with Galois group \(S_4 \). There must exist intermediate fields \(F^{tr} \) and \(F^{ur} \) such that \(\text{Gal}(K/F^{tr}) \) is a \(p \)-group, and \(\text{Gal}(F^{tr}/F) \) and \(\text{Gal}(F^{ur}/F) \) are cyclic groups. By Galois theory, there is a \(p \)-group \(S' \) which is a normal subgroup of \(S_4 \). Since \(p \geq 3 \), \(S' \) must be \((1)\). Since \(S_4 \) does not have a cyclic normal subgroup \(S \) such that \(S_4/S \) is also cyclic, this is a contradiction.

Similarly we get \(\nu(F, A_4) = 0 \). \(\Box \)

Proposition 4.2. Let \(p = 2 \). Then
\[
\nu(F, A_4) = \begin{cases}
4(2^m - 1)/3 & \text{if } \mu_3 \subset F, \\
(2^m - 1)/3 & \text{if } \mu_3 \not\subset F.
\end{cases}
\]

Proof. Let \(K \) be an \(A_4 \)-extension over \(F \). Since \(K_4 \) is a normal subgroup of \(A_4 \), there exists a (unique) Galois subfield \(F' \) of degree 3 over \(F \), where \(K_4 \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \).

By [2],
\[
|F'^*/(F'^*)^2| = 4q^{3e},
|F^*/(F^*)^2| = 4q^e.
\]

It is clear that the natural map of \(F'^*/(F'^*)^2 \to F^*/(F^*)^2 \) is an injection since \([F': F] = 3 \). We consider the action on \(F'^*/(F'^*)^2 \) of the Galois group \(\text{Gal}(F'/F) \).

(1) Denote \(G' = \text{Gal}(F'/F) \). Then the following result holds:
\[
(F^*/(F^*)^2)^G' \cong F^*/(F^*)^2.
\]

As we’ve already noted injectivity, it remains to show that the natural map is surjective. Let \(a \in F'^*/(F'^*)^2 \) be a fixed point of \(\text{Gal}(F'/F) \) and \(a \neq 1 \) in \(F'^*/(F'^*)^2 \). Then \(F'(\sqrt{a'}) \) is a Galois extension over \(F \), where \(a' \) represents a lifting of \(a \) in \(F'^* \).

There isn’t an order-2 normal subgroup in \(S_3 \), so
\[
\text{Gal}(F'(\sqrt{a'})/F) \cong \mathbb{Z}/6\mathbb{Z}.
\]

Let \(F'' \) be the fixed field of the normal subgroup \(\mathbb{Z}/3\mathbb{Z} \). There exists an element \(b \in F^*/(F^*)^2 \) such that
\[
F'' = F(\sqrt{b}).
\]

Then
\[
F'(\sqrt{a'}) = F'(\sqrt{b}).
\]

So \(a = b \) in \(F'^*/(F'^*)^2 \).

(2) Let \(\sigma \) be a generator of \(G' \). Assume \(x \in F'^*/(F'^*)^2 \) such that \(F^*/(F^*)^2 \); then there are the following two cases:

(i) \(N_{F'/F}(x) = 1 \) in \(F^*/(F^*)^2 \),
(ii) \(N_{F'/F}(x) \neq 1 \) in \(F^*/(F^*)^2 \).
In (i), the field $F'((\sqrt{x}, \sqrt{\sigma x})$ is an A_4-extension over F since the Galois group of $F'((\sqrt{x}, \sqrt{\sigma x})/F$ isomorphic to $K_4 \times \mathbb{Z}/3\mathbb{Z}$, where $K_4 \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

In (ii),

$$F'((\sqrt{x}, \sqrt{\sigma x}, \sqrt{\sigma^2 x}) = F'((\sqrt{x/\sigma(x)}, \sqrt{\sigma x/\sigma^2 x}, \sqrt{N_{F'/F}(x)}),$$

So $F'((\sqrt{x}, \sqrt{\sigma x}, \sqrt{\sigma^2 x})$ is an $(A_4 \times \mathbb{Z}/2\mathbb{Z})$-extension over F. Any $(A_4 \times \mathbb{Z}/2\mathbb{Z})$-extension K is generated by an A_4-extension over F and an extension of degree 2 over F. Denote the unique extension of degree 3 by F'; then there exist $x \in F^*/(F^*)^2$ and $a \in F^*/(F^*)^2$ satisfying $x \neq F^*/(F^*)^2$, $N_{F'/F}(x) \in (F^*)^2$ and $a \notin (F^*)^2$, such that $K = F'((\sqrt{x}, \sqrt{\sigma x}, \sqrt{a})$. It is easy to see that

$$K = F'((\sqrt{ax/\sigma x}, \sqrt{a\sigma x/\sigma^2 x}, \sqrt{a\sigma^2 x/x})$$

since $N_{F'/F}(x) = x\sigma x\sigma^2 x = 1$ in $F^*/(F^*)^2$. Then $\sigma x/\sigma^2 x = x\sigma^2 x/\sigma^2 x = x$ in $F^*/(F^*)^2$. Consider K as an extension over F'; there exist 7 subfields with order 2 over F' which are one-to-one correspondents to $\{y, \sigma y, \sigma^2 y, y\sigma y, y\sigma^2 y, y^2, y, N_{F'/F}(y)\}$, where $y = ax/\sigma x$. And $N_{F'/F}(y) = a \neq 1$ in $F^*/(F^*)^2$. The $\text{Gal}(F'/F)$-orbits are $\{y, \sigma y, \sigma^2 y\}$, $\{y\sigma y, y\sigma^2 y, y^2\}$, and $\{N_{F'/F}(y)\}$. So any $(A_4 \times \mathbb{Z}/2\mathbb{Z})$-extension over F is in form of (ii) and

$$\nu(F, A_4 \times \mathbb{Z}/2\mathbb{Z}) = \nu(F, A_4)\nu(F, \mathbb{Z}/2\mathbb{Z})$$

(i) Suppose $\mu_3 \not\subset F$, F' is the unique unramified extension of degree 3 over F, so

$$3\nu(F, A_4) + 3\nu(F, A_4 \times \mathbb{Z}/2\mathbb{Z}) = 4q^{3e} - 4q^e,$$

$$\nu(F, A_4 \times \mathbb{Z}/2\mathbb{Z}) = \nu(F, A_4)(4q^e - 1).$$

Then

$$\nu(F, A_4) = (q^{2e} - 1)/3.$$

(ii) Suppose $\mu_3 \subset F$, F' is the unique unramified extension and 3 totally ramified extensions of degree 3 over F, so

$$3\nu(F, A_4) + 3\nu(F, A_4 \times \mathbb{Z}/2\mathbb{Z}) = 4(4q^{3e} - 4q^e),$$

$$\nu(F, A_4 \times \mathbb{Z}/2\mathbb{Z}) = \nu(F, A_4)(4q^e - 1).$$

Then

$$\nu(F, A_4) = 4(q^{2e} - 1)/3.$$

\[\square\]

Proposition 4.3. Let $p = 2$. Then

$$\nu(F, S_4) = \begin{cases}
0 & \text{if } \mu_3 \subset F, \\
2m+1 - 1 & \text{if } \mu_3 \not\subset F \text{ and } m \text{ is even and } f = 1, \\
2m - 1 & \text{otherwise.}
\end{cases}$$

Proof. By Krasner’s theorem [3],

$$|M(4)| = 16q^{3e} - 4q^{2e} - 5.$$

By the local class field theory and the dual theory of the finite abelian group, the following equation holds:

$$|Ab(4)| = |\{S : S \text{ is the subgroup of order } 4 \text{ of } F^*/(F^*)^4\}|.$$
Let T_1 be the set consisting of the elements of order ≤ 2 in $F^*/(F^*)^4$, and let T_2 be the set consisting of the elements of order 4 in $F^*/(F^*)^4$. The sequence
\[
0 \to T_1 \to F^*/(F^*)^4 \to (F^*)^2/(F^*)^4 \to 0
\]
is exact. The third map is $a \mapsto a^2$. So
\[
|T_1| = |F^*/(F^*)^4|/(F^*)^2/(F^*)^4|.
\]
Suppose $\mu_4 \not\subseteq F$; then
\[
|T_1| = 4\mu^e, \\
|T_2| = 8\mu^{2e} - 4\mu^e.
\]
Then
\[
|\text{Ab}(4)| = |T_2|/2 + (|T_1| - 1)(|T_1| - 2)/6 = 20\mu^{2e}/3 - 4\mu^e + 1/3.
\]
Suppose $\mu_4 \subseteq F$; then
\[
|T_1| = 4\mu^e, \\
|T_2| = 16\mu^{2e} - 4\mu^e.
\]
Then
\[
|\text{Ab}(4)| = |T_2|/2 + (|T_1| - 1)(|T_1| - 2)/6 = 32\mu^{2e}/3 - 4\mu^e + 1/3.
\]
Since D_8 is a 2-group, by Theorem 2.2 of [7],
\[
\nu(F, D_8) = \begin{cases}
q^e(q^e - 1)(4q^e - 1) & \text{if } \mu_4 \subseteq F \text{ or } \mu_4 \not\subseteq F \text{ and } m \text{ is even and } f = 1, \\
q^e(2q^e - 1)^2 & \text{otherwise.}
\end{cases}
\]
By Lemma 2,
\[
(i) \text{ If } \mu_4 \subseteq F, \text{ then } \\
\nu(F, S_4) = (|M(4)| - |\text{Ab}(4)|)/4 - \nu(F, A_4) - \nu(F, D_8) = 4(q^{2e} - 1)/3 - \nu(F, A_4).
\]
\[
(ii) \text{ If } \mu_4 \not\subseteq F, \text{ and } m \text{ is odd or } m \text{ is even and } f \geq 2, \text{ then } \\
\nu(F, S_4) = (|M(4)| - |\text{Ab}(4)|)/4 - \nu(F, A_4) - \nu(F, D_8) = 4(q^{2e} - 1)/3 - \nu(F, A_4).
\]
\[
(iii) \text{ If } \mu_4 \not\subseteq F \text{ and } m \text{ is even and } f = 1, \text{ then } \\
\nu(F, S_4) = (|M(4)| - |\text{Ab}(4)|)/4 - \nu(F, A_4) - \nu(F, D_8) = (7q^{2e} - 4)/3 - \nu(F, A_4).
\]
By Proposition 4.2, we have
\[
\nu(F, S_4) = \begin{cases}
0 & \text{if } \mu_3 \subseteq F, \\
2q^{2e} - 1 & \text{if } \mu_4 \not\subseteq F \text{ and } n \text{ is even and } f = 1, \\
q^{2e} - 1 & \text{otherwise.}
\end{cases}
\]

Remark. Since K_4 is a normal subgroup of S_4 and $S_4/K_4 \cong S_3$, there exists an S_3-subextension in an S_4-extension of F by Galois theory. If $\mu_3 \subseteq F$ and $p \neq 3$, then $\nu(F, S_3) = 0$. So $\nu(F, S_4) = 0$. This gives another proof for a case of $\nu(F, S_4)$.

Using these propositions, the proof of Theorem 1.2 is obtained. This completes the proof of Theorem 1.2.
5. Examples

Example 5.1. Let $F = \mathbb{Q}_p$. Then

(1) \[
\nu(\mathbb{Q}_p, S_3) = \begin{cases}
6 & \text{if } p = 3, \\
0 & \text{if } p \equiv 1 \pmod{3}, \\
3 & \text{if } p \equiv 2 \pmod{3}.
\end{cases}
\]

(2) \[
\nu(\mathbb{Q}_p, A_4) = \begin{cases}
1 & \text{if } p = 2, \\
0 & \text{if } p > 2.
\end{cases}
\]

(3) \[
\nu(\mathbb{Q}_p, S_4) = \begin{cases}
3 & \text{if } p = 2, \\
0 & \text{if } p > 2.
\end{cases}
\]

(4) \[
\nu(\mathbb{Q}_p, S_n) = \nu(\mathbb{Q}_p, A_n) = 0 \quad (n \geq 5).
\]

References

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA, HEFEI, PEOPLE’S REPUBLIC OF CHINA 230026
E-mail address: dshwei@ustc.edu

DEPARTMENT OF MATHEMATICS, NANJING NORMAL UNIVERSITY, NANJING, PEOPLE’S REPUBLIC OF CHINA 210097
E-mail address: cgji@njnu.edu.cn