Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On Littlewood-Paley functions


Author: Leslie C. Cheng
Journal: Proc. Amer. Math. Soc. 135 (2007), 3241-3247
MSC (2000): Primary 42B25
DOI: https://doi.org/10.1090/S0002-9939-07-08917-4
Published electronically: June 20, 2007
MathSciNet review: 2322755
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that, for a compactly supported $ L^q$ function $ \Phi$ with vanishing integral on $ \mathbf{R}^n$, the corresponding square function operator $ S_\Phi$ is bounded on $ L^p$ for $ \vert 1/p - 1/2\vert < \min\{(q-1)/2, 1/2\}$.


References [Enhancements On Off] (What's this?)

  • 1. Al-Salman, A., Al-Qassem, H., Cheng, L. C., Pan, Y., $ L^p$ Bounds for the Function of Marcinkiewicz, Math. Res. Lett. 9 (2002), 697-700. MR 1906071 (2004d:42020)
  • 2. Benedek, A., Calderón, A. and Panzone, R., Convolution operators on Banach space valued functions, Proc. Natl. Acad. Sci. USA 48 (1962), 356-365. MR 0133653 (24:A3479)
  • 3. Bergh, J. and Löfström, J., Interpolation Spaces, Springer-Verlag, 1976.
  • 4. Coifman, R. and Fefferman, C., Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. MR 0358205 (50:10670)
  • 5. Coifman, R. and Meyer, Y., Au delà des opérateurs pseudo-différentiels, Astérisque 57 (1978). MR 518170 (81b:47061)
  • 6. Ding, Y., On Marcinkiewicz integral, Proc. of the conference ``Singular Integrals and Related Topics, III'', Osaka, Japan (2001), 28-38.
  • 7. Ding, Y., Fan, D.. and Pan, Y., On Littlewood-Paley functions and singular integrals, Hokkaido Math. J. 29 (2000), 537-552. MR 1795491 (2001m:42038)
  • 8. Duoandikoetxea, J. and Rubio de Francia, J. L., Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), 541-561. MR 837527 (87f:42046)
  • 9. Duoandikoetxea, J. and Seijo, E., Weighted inequalities for rough square functions through extrapolation, Studia Math. 149 (2002), 239-252. MR 1890732 (2003a:42022)
  • 10. Journé, J.-L., Calderón-Zygmund operators, pseudo-differential operators and the Cauchy integral of Calderón, Lecture Notes in Math. 994 (1983), Springer-Verlag. MR 706075 (85i:42021)
  • 11. Muckenhoupt, B., Weighted norm inequalities for the Hardy maximal functions, Trans. Amer. Math. Soc. 165 (1972), 207-226. MR 0293384 (45:2461)
  • 12. Sato, S., Remarks on square functions in the Littlewood-Paley theory, Bull. Austral. Math. Soc. 58 (1998), 199-221. MR 1642027 (99g:42024)
  • 13. Stein, E.M., On the functions of Littlewood-Paley, Lusin and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430-466. MR 0112932 (22:3778)
  • 14. Stein, E.M., Harmonic Analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, 1993. MR 1232192 (95c:42002)
  • 15. Stein, E.M., Singular integrals and differentiability properties of functions, Princeton University Press, 1970. MR 0290095 (44:7280)
  • 16. Walsh, T., On the function of Marcinkiewicz, Studia Math. 44 (1972), 203-217. MR 0315368 (47:3917)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42B25

Retrieve articles in all journals with MSC (2000): 42B25


Additional Information

Leslie C. Cheng
Affiliation: Department of Mathematics, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010
Email: lcheng@brynmawr.edu

DOI: https://doi.org/10.1090/S0002-9939-07-08917-4
Received by editor(s): June 27, 2006
Published electronically: June 20, 2007
Communicated by: Michael T. Lacey
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society