ON THE SUM FORMULA FOR THE q-ANALOGUE OF NON-STRICT MULTIPLE ZETA VALUES

YASUO OHNO AND JUN-ICHI OKUDA

(Communicated by Jonathan M. Borwein)

Abstract. In this article, the q-analogues of the linear relations of non-strict multiple zeta values called “the sum formula” and “the cyclic sum formula” are established.

1. Introduction

For any multi-index $k = (k_1, k_2, \ldots, k_r)$ ($k_i \in \mathbb{Z}$, $k_i > 0$), the weight $\text{wt}(k)$ and depth $\text{dep}(k)$ of k are by definition the integers $k = k_1 + k_2 + \cdots + k_r$ and r respectively. We denote by $I(k, r)$ the set of multi-indices k of weight k, and depth r, and by $I_0(k, r)$ the subset of admissible indices, i.e., indices with the extra requirement that $k_1 \geq 2$.

For an admissible index (k_1, \ldots, k_r), the multiple zeta value $\zeta((k_1, \ldots, k_r)) : = \sum_{n_1 > \cdots > n_r > 0} \frac{1}{n_1^{k_1} \cdots n_r^{k_r}}$, $\zeta^*((k_1, \ldots, k_r)) : = \sum_{n_1 \geq \cdots \geq n_r \geq 1} \frac{1}{n_1^{k_1} \cdots n_r^{k_r}}$. The latter is also called multiple zeta-star value (MZSV, for short) in $[1, 19]$. Both values can be written as a \mathbb{Z}-linear combination of each other.

These values are known to be related to many objects of mathematics and quantum physics, for example, connection formulae for hypergeometric functions $[20]$, knot invariants $[16]$, Feynman diagrams $[15]$ and so on. They also appear in the coefficients of the Drinfel’d’s KZ-associator $[7]$. The properties of the KZ-associator are related to the representations of the fundamental group of a configuration space.

Study of MZSVs has been initiated by Leonhard Euler $[8]$, and he got many results including the well-known formula:

$$\zeta^*(k - 1, 1) = \frac{k + 1}{2} \zeta(k) - \frac{1}{2} \sum_{r=2}^{k-2} \zeta(r) \zeta(k - r).$$
It seems that Euler wanted to give an answer to the question, “When are MZSVs in the algebra generated by Riemann zeta values \(\zeta(k) \)?” It is a basic and an important question even now. The next two equivalent formulae were conjectured in [11], and proved by Andrew Granville [10] and Don Zagier independently.

Sum Formula. For positive integers \(0 < r < k \), there holds

\[
(1) \quad \sum_{k \in I_0(k,r)} \zeta(k) = \zeta(k), \quad \sum_{k \in I_0(k,r)} \zeta^*(k) = \binom{k-1}{r-1} \zeta(k).
\]

These formulae are so fundamental that they are re-proved again and again [2, 12, 13, 17, 18, 20, 22]. For the MZV case, there are two more proofs. One is the conclusion of the cyclic sum formula for MZSVs [19]. The other is using the special value of the generating function of multiple polylogarithms [14].

Cyclic Sum Formula. For \((k_1, \ldots, k_r) \in I_0(k,r)\),

\[
(2) \quad \sum_{i=1}^{k_r-2} \sum_{j=0}^{k_i-j} \zeta^*(k_i-j, k_{i+1}, \ldots, k_r, k_1, \ldots, k_{i-1}, j+1) = k \zeta(k+1),
\]

where the empty sum means zero.

Generating Function. For the multiple polylogarithms with equality defined by

\[
\text{Li}^*_{k_1, \ldots, k_r}(t) := \sum_{n_1 \geq \cdots \geq n_r \geq 1} \frac{t^{n_1}}{n_1^{k_1} \cdots n_r^{k_r}},
\]

the generating function and its special value at \(t = 1 \) are expressed as follows:

\[
(3) \quad \sum_{k \geq r > 0} \left\{ \sum_{k \in I_0(k,r)} \text{Li}^*_k(t) \right\} x^{k-r-1} y^{r-1} = \frac{1}{1-x-y} \int_0^t (1-s)^{-y} F_2(1-x-y, 1-y, 2-x-y; s) \, ds,
\]

\[
\sum_{k \geq r > 0} \left\{ \sum_{k \in I_0(k,r)} \zeta^*(k) \right\} x^{k-r-1} y^{r-1} = \sum_{n=1}^\infty \frac{1}{n-x-y} \frac{1}{n-y}.
\]

where \(F_2 \) is Gauß's hypergeometric series.

In this article, we define the \(q \)-analogues of MZSVs and construct the \(q \)-analogues of the above formulae.

For \(0 < q < 1 \) and \(\alpha \in \mathbb{C} \), \([\alpha] \) is defined by \([\alpha] := (1-q^\alpha)/(1-q) \). The \(q \)-Pochhammer symbol is defined by \((\alpha; q)_{\infty} := \prod_{n=0}^{\infty} (1-\alpha q^n) \) and \((\alpha; q)_n := (\alpha; q)_{\infty}/(\alpha q^n; q)_{\infty} \) for any integer \(n \). Then the \(q \)-analogues of MZV are defined by

\[
\zeta_q[k_1, \ldots, k_r] := \sum_{n_1 > \cdots > n_r > 0} \frac{q^{n_1(k_1-1)+\cdots+n_r(k_r-1)}}{[n_1]^{k_1} \cdots [n_r]^{k_r}}.
\]

A \(q \)-analogue of \(\zeta^*(k) \) is studied in [4].
Definition 1. For any admissible index \((k_1, \ldots, k_r)\), the \(q\)-analogue of MZSV and the multiple polylogarithm with equality are as follows:

\[
\zeta_q^*[k_1, \ldots, k_r] := \sum_{n_1 \geq \cdots \geq n_r \geq 1} \frac{q^{n_1(k_1-1)+\cdots+n_r(k_r-1)}}{[n_1]_{k_1} \cdots [n_r]_{k_r}},
\]

\[
\text{Li}_{k_1, \ldots, k_r}^*[t] := \sum_{n_1 \geq \cdots \geq n_r \geq 1} \frac{t^{n_1}}{[n_1]_{k_1} \cdots [n_r]_{k_r}}.
\]

As the \(q\)-analogue of (2), we have the next formula:

Theorem 1 (Cyclic Sum Formula). For \((k_1, \ldots, k_r) \in I_0(k, r),\)

\[
\sum_{i=1}^{r} \sum_{j=0}^{k-i-2} \zeta_q^*[k_i - j, k_i+1, \ldots, k_r, k_1, \ldots, k_i-1, j+1] = \sum_{l=0}^{r} (k-l-1-r) \left(\begin{array}{c} r+1 \\ l \end{array}\right) (1-q)^l \zeta_q[k - l + 1],
\]

where the empty sum means zero.

Moreover, there also holds the \(q\)-analogue of (3):

Theorem 2 (Generating Function of Multiple Polylogarithms).

\[
\sum_{k > r > 0} \left\{ \sum_{k \in I_0(k, r)} \text{Li}_k^*[t] \right\} u^{k-r-1} v^{r-1} = \frac{1}{1-u-v} \int_0^t \frac{(s; q)_n q_{\infty}}{(bs; q)_n q_{\infty}} 2\phi_1 (a, b, aq; s, q) \, dq s,
\]

where \(2\phi_1\) is Heine’s \(q\)-hypergeometric series [9], \(q^{-a-1} = \frac{1}{1-(1-q)(a+v)}\) and \(b = \frac{1-(1-q)u}{1-(1-q)(a+v)}\), and the integral is the Jackson \(q\)-integral [9].

As the corollary of these theorems, we obtain the \(q\)-analogue of (1):

Corollary 3 (Sum Formula). For integers \(0 < r < k,\)

\[
\sum_{k \in I_0(k, r)} \zeta_q^*[k] = \frac{1}{k-1} \binom{k-1}{r-1} \sum_{l=0}^{r-1} \binom{r-1}{l} (k-1-l) (1-q)^l \zeta_q[k-l].
\]

2. Proof of Theorem 1

For index \((k_1, \ldots, k_r) \in I(k, r)\) with \(k_i \geq 2\) for some \(i\), we set the convergent series

\[
T(k_1, \ldots, k_r) := \sum_{n_1 \geq \cdots \geq n_r+1 \geq 1} \frac{q^{n_1(k_1-1)+\cdots+n_r(k_r-1)}}{[n_1]_{k_1} \cdots [n_r]_{k_r}} \frac{q^{n_1-n_r+1}}{[n_1-n_r+1]_{k_r}}.
\]

This series satisfies the equation

\[
T(k_1, k_2, \ldots, k_r) - T(k_2, \ldots, k_r, k_1) = \sum_{l=0}^{r} \left(\begin{array}{c} r \\ l \end{array}\right) (k_1 - l) \left(1-q\right)^l \zeta_q[k-l+1] - \sum_{j=0}^{k_1-2} \zeta_q^*[k_1-j, k_2, \ldots, k_r, j+1].
\]
Summing up these equations by rotating the indices, and we have the theorem.

To prove (5), by using the equation

\[\frac{1}{n_1} q^{n_1-n_{r+1}} = \left(\frac{1}{n_1-n_{r+1}} - \frac{1}{n_1} \right) \frac{1}{n_{r+1}}. \]

we have

\[
T(k_1, k_2, \ldots, k_r) = \sum_{n_1 \geq \cdots \geq n_{r+1} \geq 1 \atop n_1 \neq n_{r+1}} q^{n_1(k_1-1) + n_2(k_2-1) + \cdots + n_r(k_r-1)} \left(\frac{1}{n_1-n_{r+1}} - \frac{1}{n_1} \right) \frac{1}{n_{r+1}}
\]

\[
= \sum_{n_1 \geq \cdots \geq n_{r+1} \geq 1 \atop n_1 \neq n_{r+1}} q^{n_1(k_1-2) + n_2(k_2-1) + \cdots + n_r(k_r-1)} q^{n_1} \left(\frac{1}{n_1-n_{r+1}} - \frac{1}{n_1} \right) \frac{1}{n_{r+1}}
\]

\[
- \zeta_q^* [k_1, k_2, \ldots, k_r, 1] + \sum_{n=1}^{\infty} \frac{q^{n(k-r)}}{[n]^{k+1}}
\]

\[
= \sum_{n_1 \geq \cdots \geq n_{r+1} \geq 1 \atop n_1 \neq n_{r+1}} q^{n_1(k_1-2) + n_2(k_2-1) + \cdots + n_r(k_r-1) + n_{r+1}(2-1)} q^{n_1} \left(\frac{1}{n_1-n_{r+1}} - \frac{1}{n_1} \right) \frac{1}{n_{r+1}}
\]

\[
- \zeta_q^* [k_1, k_2, \ldots, k_r, 1] + \sum_{n=1}^{\infty} \frac{q^{n(k-r)}}{[n]^{k+1}}
\]

\[
= \sum_{n_1 \geq \cdots \geq n_{r+1} \geq 1 \atop n_1 \neq n_{r+1}} q^{n_2(k_2-1) + \cdots + n_r(k_r-1) + n_{r+1}(k_1-2)} q^{n_1} \left(\frac{1}{n_1} \right) \frac{1}{n_{r+1}}
\]

\[
- \sum_{j=0}^{k_1-2} \zeta_q^*[k_1-j, k_2, \ldots, k_r, j+1] + (k_1-1) \sum_{n=1}^{\infty} \frac{q^{n(k-r)}}{[n]^{k+1}}.
\]

By using the equation

\[\frac{1}{n_1} q^{n_1} = \left(\frac{q^{n_1-n_{r+1}}}{n_1-n_{r+1}} - \frac{q^{n_1}}{n_1} \right) \frac{q^{n_{r+1}}}{n_{r+1}}. \]
Thus we have Corollary 3.

Moreover, by substituting the equation

\[\sum_{n_2 \geq \ldots \geq n_{r+2} \geq 1} q^{n_2(k_2-1)+\ldots+n_r(k_r-1)+n_{r+1}(k_{r+1}-2)} \left(\sum_{n_1=1}^{\infty} \frac{q^{n_1-n_{r+1}}}{[n_1][n_1-n_{r+1}]} - \frac{q^{n_{r+1}}}{[n_{r+1}]} \right) \]

we obtain (II).

Furthermore, for \(k = (k_1, \ldots, k_r) \in I_0(k, r) \), we set

\[J_0(k) := \bigcup_{i=1}^{r} \bigcup_{j=0}^{k_i-2} \{ (k_i-j, k_{i+1}, \ldots, k_r, k_1, \ldots, k_{i-1}, j+1) \} \subset I_0(k+1, r+1). \]

Then

\[I_0(k+1, r+1) = \bigcup_{k \in I_0(k, r)} J_0(k), \quad \text{and} \quad J_0(k) \cap J_0(k') = \emptyset \quad \text{if} \ k \neq k'. \]

From (II) we have

\[\sum_{k' \in J_0(k)} \zeta^*_q[k'] = \frac{#J_0(k)}{k-r} \sum_{l=0}^{r} (k-l) \binom{r}{l} (1-q)^l \zeta_q[k-l+1], \]

and summing up about \(k \) we obtain

\[\sum_{k' \in I_0(k+1, r+1)} \zeta^*_q[k'] = \sum_{k \in I_0(k, r)} \sum_{k' \in J_0(k)} \zeta^*_q[k'] \]

\[= \frac{#I_0(k+1, r+1)}{k-r} \sum_{l=0}^{r} (k-l) \binom{r}{l} (1-q)^l \zeta_q[k-l+1] \]

\[= \frac{1}{k-r} \binom{k-1}{r} \sum_{l=0}^{r} (k-l) \binom{r}{l} (1-q)^l \zeta_q[k-l+1]. \]

Thus we have Corollary 3.
3. Proof of Theorem 2

We denote the generating functions of \(\text{Li}_k^* \) as follows:

\[
\Psi^*(u, v; t, q) := \sum_{k \geq r > 0} \left(\sum_{k \in l(k, r)} \text{Li}^*_k[t] \right) u^{k-r} v^{r-1},
\]

\[
\Psi_0^*(u, v; t, q) := \sum_{k \geq r > 0} \left(\sum_{k \in l_0(k, r)} \text{Li}^*_k[t] \right) u^{k-r-1} v^{r-1}.
\]

To investigate the above generating functions we use the \(q \)-differential equation, where the \(q \)-differential operator \(D_q \) is defined by

\[
(D_q f)(t) := \frac{f(t) - f(qt)}{t - qt}.
\]

From the \(q \)-differential equation for \(\text{Li}_k^* \)

\[
D_q \text{Li}^*_k[u, v; t, q] = \left\{ \begin{array}{ll}
\frac{1}{t} \text{Li}^*_{k-1, k_1, \ldots, k_r}[t] & (k_1 \geq 2), \\
\frac{1}{t} \frac{1}{1 - t} \text{Li}^*_{k_2, \ldots, k_r}[t] & (k_1 = 1 \text{ and } r \geq 2), \\
\frac{1}{1 - t} & (k_1 = 1 \text{ and } r = 1),
\end{array} \right.
\]

\(\Psi^* \) and \(\Psi_0^* \) satisfy the following \(q \)-differential equations:

\[
D_q \Psi^*(u, v; t, q) = \frac{1}{t} \Psi^*(u, v; t, q),
\]

\[
D_q (\Psi^* - u \Psi_0^*)(u, v; t, q) = \frac{1}{1 - t} + \frac{1}{t} - v \Psi^*(u, v; t, q).
\]

By eliminating \(\Psi^* \) from the above equations, we have that \(\Psi_0^* \) satisfies the inhomogeneous linear \(q \)-differential equation of second order:

\[
qt(1 - t)D_q^2 f + \{(1 - t)(1 - u) - v\}D_q f = 1.
\]

\(\Psi_0^* \) is characterized as the regular solution of (7) around the origin and the value at the origin is 0.

We must find such a solution of (7) in another way. At first we put \(g := D_q f \) and solve the equation

\[
qt(1 - t)D_q g + \{(1 - t)(1 - u) - v\}g = 1,
\]

by variation of parameter. We choose \(C_0 t^a(t; q)_\infty / (bt; q)_\infty \) for the solution of the homogeneous equation

\[
qt(1 - t)D_q h + \{(1 - t)(1 - u) - v\}h = 0,
\]

where \(q^{-a-1} = \frac{1}{1 - (1 - q)(u + v)} \), \(b = \frac{1 - (1 - q)v}{1 - (1 - q)(u + v)} \), and \(C_0 \in \mathbb{C} \). We assume that

\[
g(t) = C(t) t^a \frac{(t; q)_\infty}{(bt; q)_\infty},
\]

and substitute this into (8); then we have

\[
C'(t) = q^{-a-1} t^{-a-1} \frac{bqt; q)_\infty}{(t; q)_\infty}.
\]
The Jackson integral of $C'(t)$ is as follows:

\[
\int_0^t q^{-a-1} s^{-a-1} \frac{(bs; q)_\infty}{(s; q)_\infty} \, dq \, ds = q^{-a-1} \int_0^t s^{-a-1} \sum_{n=0}^{\infty} \frac{(bs; q)_n}{(q; q)_n} s^n \, dq \, ds
\]

\[
= q^{-a-1} \sum_{n=0}^{\infty} \frac{(bs; q)_n}{(q; q)_n} \frac{t^{n-a}}{n-a}
\]

\[
= \frac{t^{-a}}{1 - u - v} \phi_1(q^{-a}, bq, q^{-a+1}; t, q),
\]

where the first equality is by virtue of the q-binomial theorem [9]. So we obtain the solution of (8) which is regular at the origin:

\[
g(t) = \frac{1}{1 - u - v} \frac{(t; q)_\infty}{(bt; q)_\infty} 2\phi_1(q^{-a}, bq, q^{-a+1}; t, q).
\]

We consider the Jackson integral again and get the solution of (7):

\[
f(t) = \frac{1}{1 - u - v} \int_0^t \frac{(s; q)_\infty}{(bs; q)_\infty} 2\phi_1(q^{-a}, bq, q^{-a+1}; s, q) \, dq \, ds.
\]

By executing the Jackson integral, we have

\[
f(t) = \frac{1}{1 - u - v} \sum_{n=0}^{\infty} \frac{(1 - q^{-a})(bs; q)_n}{(1 - q^{n-a})(q; q)_n} \int_0^t s^n \frac{(s; q)_\infty}{(bs; q)_\infty} \, dq \, ds
\]

\[
= \frac{1}{1 - u - v} \sum_{n=0}^{\infty} \frac{(1 - q^{-a})(bs; q)_n}{(1 - q^{n-a})(q; q)_n} (1 - q)^{t_{n+1}} \frac{(t; q)_\infty}{(bt; q)_\infty} \sum_{j=0}^{\infty} q^{j(n+1)} \frac{(bt)_j}{(t)_j},
\]

which is zero at $t = 0$. Thus we obtain the theorem.

In the same way as [21], the special value of $\text{Li}^*_{k_1, k_2, \ldots, k_r}$ and the generating function are expressed by the combination of the q-anologue of MZSVs: Substitute $t = q$ and the value is

\[
\text{Li}^*_{k_1, k_2, \ldots, k_r} [q] = \sum_{a_1=0}^{k_1-1} \sum_{a_2=0}^{k_2-1} \cdots \sum_{a_r=0}^{k_r-1} \binom{k_1-2}{a_1} \binom{k_2-1}{a_2} \cdots \binom{k_r-1}{a_r} \times (1-q)^{k_1+\cdots+k_r-a_1-\cdots-a_r} \zeta_q^*[a_1, a_2, \ldots, a_r],
\]

and the generating function is

\[
\Psi^*(u, v; q, q) = \frac{1}{1 + (1-q)x} \sum_{k > r > 0} \left\{ \sum_{k \in I_0(k, r)} \zeta_q^*[k] \right\} x^{k-r-1} y^{r-1},
\]

where $x = \frac{u}{1-(1-q)u}$ and $y = \frac{v}{1-(1-q)u}$.
On the other hand, by substituting $t = q$ to \[9\],

\[
\Psi(u, v; q, q) = \frac{1}{1 - u - v} \sum_{n=0}^{\infty} \left(1 - q^{-a}\right) \left(\frac{bq}{q}\right)^n (1 - q) q^{n+1} \frac{(q; q)_{\infty}}{(1 - bq^n; q)_{\infty}} \\
\times \sum_{j=0}^{\infty} q^{j(n+1)} \frac{(bq; q)_j}{(q; q)_j}.
\]

\[
= \frac{1 - q}{1 - u - v} \sum_{n=0}^{\infty} \left(1 - q^{-a}\right) (1 - q) q^n \frac{(q; q)_{\infty}}{(1 - bq^n; q)_{\infty}} \frac{(bq^{n+2}; q)_{\infty}}{(q^{n+1}; q)_{\infty}}
\]

\[
= \frac{1 - q}{1 - u - v} \sum_{n=0}^{\infty} \left(1 - q^{-a}\right) q^{n+1} (1 - bq^{n+1})
\]

\[
= \sum_{n=1}^{\infty} q^n \frac{1 - (1 - q)(u + v)}{[n] - (u + v) [n] - (1 - q^n)u - v}
\]

\[
= \frac{1}{1 + (1 - q)x} \sum_{n=1}^{\infty} \frac{q^n (1 - (1 - q)y) [n] - y \cdot [n] - xq^n - y}{[n] - y \cdot [n] - xq^n - y}.
\]

Hence we have

\[
\sum_{k > r > 0} \left\{ \sum_{k \in I_0(k, r)} \zeta^r[k]\right\} x^{k-r-1} y^{r-1} = \sum_{n=1}^{\infty} q^n \frac{(1 - (1 - q)y) [n] - y \cdot [n] - xq^n - y}{[n] - y \cdot [n] - xq^n - y},
\]

and expanding the right hand by geometric series, we obtain Corollary 3.

Acknowledgments

The authors express their deep gratitude to Professor Yoshihiro Takeyama for his helpful suggestions.

References

7. V. G. Drinfel’d, *On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal(Q/Q),* Algebra i Analiz 2 (1990), no. 4, 149–181. MR1080203 (92f:16047)

SUM FORMULA FOR q-ANALOGUE OF NON-STRIT MULTIPLE ZETA VALUES

Department of Mathematics, Kinki University, Higashi-Osaka 577-8502, Japan
Current address: Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
E-mail address: ohno@math.kindai.ac.jp

Department of Mathematical Sciences, Science and Engineering, Waseda University, Tokyo 169-8555, Japan
E-mail address: okuda@gm.math.waseda.ac.jp

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use