Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Dimension functions of Cantor sets

Authors: Ignacio Garcia, Ursula Molter and Roberto Scotto
Journal: Proc. Amer. Math. Soc. 135 (2007), 3151-3161
MSC (2000): Primary 28A78, 28A80
Published electronically: June 21, 2007
MathSciNet review: 2322745
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We estimate the packing measure of Cantor sets associated to non-increasing sequences through their decay. This result, dual to one obtained by Besicovitch and Taylor, allows us to characterize the dimension functions recently found by Cabrelli et al for these sets.

References [Enhancements On Off] (What's this?)

  • [Bes39] E. Best.
    A closed dimensionless linear set.
    Proc. Edinburgh Math. Soc. (2), 6:105-108, 1939. MR 0001824 (1:302f)
  • [BT54] A. S. Besicovitch and S. J. Taylor.
    On the complementary intervals of a linear closed set of zero Lebesgue measure.
    J. London Math. Soc., 29:449-459, 1954. MR 0064849 (16:344d)
  • [CHM02] Carlos Cabrelli, K. Hare, and Ursula M. Molter.
    Some counterexamples for Cantor sets.
    Unpublished Manuscript, Vanderbilt, 2002.
  • [CHM97] Carlos A. Cabrelli, Kathryn E. Hare, and Ursula M. Molter.
    Sums of Cantor sets.
    Ergodic Theory Dynam. Systems, 17(6):1299-1313, 1997. MR 1488319 (98k:28009)
  • [CMMS04] Carlos Cabrelli, Franklin Mendivil, Ursula M. Molter, and Ronald Shonkwiler.
    On the Hausdorff $ h$-measure of Cantor sets.
    Pacific J. Math., 217(1):45-59, 2004. MR 2105765 (2005h:28013)
  • [CMPS05] C. Cabrelli, U. Molter, V. Paulauskas, and R. Shonkwiler.
    Hausdorff measure of $ p$-Cantor sets.
    Real Anal. Exchange, 30(2):413-433, 2004/05. MR 2177411 (2006g:28012)
  • [Fal97] Kenneth Falconer.
    Techniques in fractal geometry.
    John Wiley & Sons Ltd., Chichester, 1997. MR 1449135 (99f:28013)
  • [Ols03] L. Olsen.
    The exact Hausdorff dimension functions of some Cantor sets.
    Nonlinearity, 16(3):963-970, 2003. MR 1975790 (2004g:28009)
  • [Rog98] C. A. Rogers.
    Hausdorff measures.
    Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1998. MR 1692618 (2000b:28009)
  • [Tri82] Claude Tricot, Jr.
    Two definitions of fractional dimension.
    Math. Proc. Cambridge Philos. Soc., 91(1):57-74, 1982. MR 633256 (84d:28013)
  • [Tri95] Claude Tricot.
    Curves and fractal dimension.
    Springer-Verlag, New York, 1995. MR 1302173 (95i:28005)
  • [TT85] S. James Taylor and Claude Tricot.
    Packing measure, and its evaluation for a Brownian path.
    Trans. Amer. Math. Soc., 288(2):679-699, 1985. MR 776398 (87a:28002)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 28A78, 28A80

Retrieve articles in all journals with MSC (2000): 28A78, 28A80

Additional Information

Ignacio Garcia
Affiliation: Departamento de Matemática, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina and IMAL CONICET UNL

Ursula Molter
Affiliation: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, Capital Federal, Argentina and CONICET, Argentina

Roberto Scotto
Affiliation: Departamento de Matemática, Universidad Nacional del Litoral, Santa Fe, Argentina

Keywords: Cantor sets, packing measure, Hausdorff dimension, dimension function
Received by editor(s): May 2, 2006
Published electronically: June 21, 2007
Communicated by: Michael T. Lacey
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society