Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Two classes of special functions using Fourier transforms of some finite classes of classical orthogonal polynomials

Authors: Wolfram Koepf and Mohammad Masjed-Jamei
Journal: Proc. Amer. Math. Soc. 135 (2007), 3599-3606
MSC (2000): Primary 33C45
Published electronically: June 29, 2007
MathSciNet review: 2336575
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Some orthogonal polynomial systems are mapped onto each other by the Fourier transform. The best-known example of this type is the Hermite functions, i.e., the Hermite polynomials multiplied by $ \exp(-x^2/2)$, which are eigenfunctions of the Fourier transform. In this paper, we introduce two new examples of finite systems of this type and obtain their orthogonality relations. We also estimate a complicated integral and propose a conjecture for a further example of finite orthogonal sequences.

References [Enhancements On Off] (What's this?)

  • [AAR] G. E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications 71, Cambridge University Press, Cambridge, 1999. MR 1688958 (2000g:33001)
  • [Askey1] R. Askey, Continuous Hahn polynomials, J. Physics A 18, 1985, L1017-L1019. MR 0812420 (87d:33021)
  • [Askey2] R. Askey, An integral of Ramanujan and orthogonal polynomials, J. Indian Math. Soc. 51, 1987, 27-36. MR 0988306 (90d:33004)
  • [AS] N. M. Atakishiyev and S. K. Suslov, The Hahn and Meixner polynomials of an imaginary argument and some of their applications, J. Physics A 18, 1985, 1583-1596. MR 0796065 (87i:33021)
  • [Bail] W. N. Bailey, Generalized Hypergeometric Series, Cambridge Tracts 32, Cambridge University PFTV, 1935. Reprinted by Hafner Publishing Company, 1972. MR 0185155 (32:2625)
  • [EMOT] A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of Integral Transforms, Vol. 2, McGraw-Hill, 1954. MR 0065685 (16:468c)
  • [Koel] H. T. Koelink, On Jacobi and continuous Hahn polynomials, Proc. Amer. Math. Soc. 124, 1996, 887-898. MR 1307541 (96f:33018)
  • [Koep] W. Koepf, Hypergeometric Summation, Braunschweig/Wiesbaden, Vieweg, 1998. MR 1644447 (2000c:33002)
  • [Koor1] T. H. Koornwinder, Special orthogonal polynomial systems mapped onto each other by the Fourier-Jacobi transform, Polynômes Orthogonaux et Applications (C. Brezinski, A. Draux, A. P. Magnus, P. Maroni and A. Ronveaux, Eds.), Lecture Notes Math. 1171, Springer, 1985, 174-183. MR 0838982 (87g:33007)
  • [Koor2] T. H. Koornwinder, Group theoretic interpretations of Askey's scheme of hypergeometric orthogonal polynomials, Orthogonal Polynomials and their Applications (M. Alfaro, J. S. Dehesa, F. J. Marcellan, J. L. Rubio de Francia and J. Vinuesa, Eds.), Lecture Notes Math. 1329, Springer, 1988, 46-72. MR 0973421 (90b:33024)
  • [Les] P. Lesky, Eine Charakterisierung der klassischen kontinuierlichen, diskreten und $ q$-Orthogonalpolynome, Shaker, Aachen, 2005.
  • [Mas1] M. Masjed-Jamei, Classical orthogonal polynomials with weight function $ ((ax+b)^2+(cx+d)^2)^{-p}\exp(q\operatorname{arctan} ((ax+b)/(cx+d)))$; $ -\infty<x<\infty$ and a generalization of $ T$ and $ F$ distributions, J. Integral Transforms and Special Functions 15 (2), 2004, 137-153. MR 2053407 (2005b:33011)
  • [Mas2] M. Masjed-Jamei, Three finite classes of hypergeometric orthogonal polynomials and their application in functions approximation, J. Integral Transforms and Special Functions 13 (2), 2002, 169-190. MR 1915513 (2003i:33011)
  • [PFTV] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Beta Function, $ T$ Student Distribution and $ F$-Distribution, Section 6.2 in Numerical Recipes in Fortran: The Art of Scientific Computing, second edition, Cambridge University Press, Cambridge, 1992, 219-223. MR 1196230 (93i:65001a)
  • [Rama] S. Ramanujan, A class of definite integrals, Quarterly J. Math. 48 (1920), 294-310.
  • [WF] R. E. Walpole and J. E. Freund, Mathematical Statistics, Prentice-Hall, 1980. MR 0591029 (81k:62002)
  • [WW] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge University Press, Cambridge, 1962. MR 0178117 (31:2375)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 33C45

Retrieve articles in all journals with MSC (2000): 33C45

Additional Information

Wolfram Koepf
Affiliation: Department of Mathematics, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany

Mohammad Masjed-Jamei
Affiliation: Department of Mathematics, K. N. Toosi University of Technology, Sayed Khandan, Jolfa Av., Tehran, Iran

Keywords: Classical orthogonal polynomials, Fourier transform, hypergeometric functions, Gosper identity, Ramanujan integral
Received by editor(s): January 1, 2006
Received by editor(s) in revised form: August 16, 2006
Published electronically: June 29, 2007
Communicated by: Carmen C. Chicone
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society