Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some exact sequences for Toeplitz algebras of spherical isometries


Author: Bebe Prunaru
Journal: Proc. Amer. Math. Soc. 135 (2007), 3621-3630
MSC (2000): Primary 47L80, 47B35; Secondary 47B20, 46L07
DOI: https://doi.org/10.1090/S0002-9939-07-08893-4
Published electronically: August 1, 2007
MathSciNet review: 2336578
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A family $ \{T_{j}\}_{j\in J}$ of commuting bounded operators on a Hilbert space $ H$ is said to be a spherical isometry if $ \sum _{j\in J}T^{*}_{j}T_{j}=1$ in the weak operator topology. We show that every commuting family $ \mathcal{F}$ of spherical isometries is jointly subnormal, which means that it has a commuting normal extension $ \widehat {\mathcal{F}}$ on some Hilbert space $ \widehat {H}\supset H.$ Suppose now that the normal extension $ \widehat {\mathcal{F}}$ is minimal. Then we show that every bounded operator $ X$ in the commutant of $ \mathcal{F}$ has a unique norm preserving extension to an operator $ \widehat {X}$ in the commutant of $ \widehat {\mathcal{F}}.$ Moreover, if $ \mathcal{C}$ is the commutator ideal in $ C^{*}(\mathcal{F}),$ then $ C^{*}(\mathcal{F})/{\mathcal{C}}$ is *-isomorphic to $ C^{*}(\widehat {\mathcal{F}}).$ We also show that the commutant of the minimal normal extension is completely isometric, via the compression mapping, to the space of Toeplitz-type operators associated to $ \mathcal{F}.$ We apply these results to construct exact sequences for Toeplitz algebras on generalized Hardy spaces associated to strictly pseudoconvex domains.


References [Enhancements On Off] (What's this?)

  • [Ab74] M.B. Abrahamse, Toeplitz operators in multiply connected regions, Amer. J. Math. 96 (1974), 261-297. MR 0361891 (50:14333)
  • [Ar75] W. Arveson, Interpolation problems in nest algebras, J. Funct. Anal. 20 (1975), no. 3, 208-233. MR 0383098 (52:3979)
  • [Ar98] W. Arveson, Subalgebras of $ C\sp{*}$-algebras. III. Multivariable operator theory, Acta Math 181 (1998), no. 2, 159-228. MR 1668582 (2000e:47013)
  • [At90] A. Athavale, On the intertwining of joint isometries, J. Operator Theory 23 (1990), no. 2, 339-350. MR 1066811 (91i:47029)
  • [At98] -, GKS decomposition and spherical dilations, J. Funct. Anal. 154 (1998), 117-129. MR 1066811 (91i:47029)
  • [AL96] K.R.M. Attele, A.R. Lubin, Dilations and commutant lifting for jointly isometric operators--a geometric approach, J. Funct. Anal. 140 (1996), no. 2, 300-311. MR 1409039 (97i:47011)
  • [BG81] L. Boutet de Monvel, V. Guillemin, The Spectral Theory of Toeplitz Operators, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, Annals of Mathematics Studies, 99, 1981. MR 620794 (85j:58141)
  • [BP05] D. Beltita, B. Prunaru, Amenability, completely bounded projections, dynamical systems and smooth orbits, Integral Equations Operator Theory 57 (2007), no. 1, 1-17.
  • [BC70] C.A. Berger and L.A. Coburn, One parameter semigroups of isometries, Bull. Amer. Math. Soc. 76 (1970), 1125-1129. MR 0265984 (42:893)
  • [BCL78] C.A. Berger, L.A. Coburn, A. Lebow, Representation and index theory for $ C^{*}$-algebras generated by commuting isometries, J. Functional Analysis 27 (1978), no. 1, 51-99. MR 0467392 (57:7251)
  • [BH63] A. Brown, P.R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/1964), 89-102. MR 0160136 (28:3350)
  • [CE77] M.D. Choi, E.G. Effros, Injectivity and operator spaces, J. Functional Analysis 24 (1977), no. 2, 156-209. MR 0430809 (55:3814)
  • [Co73] L.A. Coburn, Singular integral operators and Toeplitz operators on odd spheres, Indiana Univ. Math. J. 23 (1973/74), 433-439. MR 0322595 (48:957)
  • [DJ77] A.M. Davie, N.P. Jewell, Toeplitz operators in several complex variables, J. Functional Analysis 26 (1977), no. 4, 356-368. MR 0461195 (57:1180)
  • [Did05] M. Didas, Spherical isometries are reflexive, Integral Equations Operator Theory 52 (2005), 599-604. MR 2184607 (2006g:47009)
  • [Dix50] J. Dixmier, Les moyennes invariantes dans les semi-groups et leurs applications, Acta Sci. Math. Szeged 12 (1950), 213-227. MR 0037470 (12:267a)
  • [Do69] R.G. Douglas, On the operator equation $ S^{*}XT=X$ and related topics, Acta. Sci. Math. (Szeged) 30 (1969), 19-32. MR 0250106 (40:3347)
  • [Do72] -, On the $ C^{*}$-algebra of a one-parameter semigroup of isometries, Acta Math. 128 (1972), no. 3-4, 143-151. MR 0250106 (40:3347)
  • [Do98] -, Banach Algebra Techniques in Operator Theory, Second edition. Graduate Texts in Mathematics, 179. Springer-Verlag, New York, 1998. MR 0250106 (40:3347)
  • [Es99] J. Eschmeier, Algebras of subnormal operators on the unit ball, J. Operator Theory 42 (1999), 37-76. MR 1694801 (2000c:47013)
  • [Es01] -, On the structure of spherical contractions, Recent advances in operator theory and related topics (eds. L. Kerchy, C. Foias, I. Gohberg, M. Langer), pp. 211-242, Birkhauser, Basel (2001). MR 1694801 (2000c:47013)
  • [Es06] -, On the reflexivity of multivariable isometries, Proc. Amer. Math. Soc. 134 (2006), 1783-1789. MR 1694801 (2000c:47013)
  • [EsP01] J. Eschmeier and M. Putinar, Some remarks on spherical isometries, ``Systems, Approximation, Singular Integral Operators, and Related Topics'' (A.A.Borichev and N.K.Nikolskii,eds.), Birkhauser, Basel et al., (2001), 271-292. MR 1882699 (2003e:47045)
  • [Ga69] T.W. Gamelin, Uniform Algebras, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1969. MR 0410387 (53:14137)
  • [Ito58] T. Itô, On the commutative family of subnormal operators, J. Fac. Sci. Hokkaido Univ. Ser. I 14 (1958), 1-15. MR 0107177 (21:5902)
  • [Jan88] J. Janas, Toeplitz spectral inclusion and generalized in modulus property, Proc. Amer. Math. Soc. 104 (1988), 231-234. MR 958073 (90c:47045)
  • [Kad51] R. V. Kadison, Isometries of operator algebras, Ann. of Math. 54 (1951), 325-338. MR 0043392 (13:256a)
  • [Lo85] E. Løw, Embeddings and proper holomorphic maps of strictly pseudoconvex domains into polydiscs and balls, Math. Z. 190 (1985), 401-410. MR 806898 (87b:32047)
  • [Mu87] G.J. Murphy, Ordered groups and Toeplitz algebras, J. Operator Theory 18 (1987), no. 2, 303-326. MR 915512 (89f:46132)
  • [Mu92] -, Toeplitz operators on generalised $ H\sp{2}$ spaces, Integral Equations Operator Theory 15 (1992), no. 5, 825-852. MR 915512 (89f:46132)
  • [St55] W.F. Stinespring, Positive functions on $ C^{*}$-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216. MR 0069403 (16:1033b)
  • [Sun87] C. Sundberg, Exact sequences for generalized Toeplitz operators, Proc. Amer. Math. Soc. 101 (1987), 634-637. MR 911023 (89e:47040)
  • [TY78] J. Tomiyama and K. Yabuta, Toeplitz operators for uniform algebras, Tohoku Math. J. (2) 30 (1978)), no. 1, 117-129. MR 0482220 (58:2302)
  • [Up96] H. Upmeier, Toeplitz Operators and Index Theory in Several Complex Variables, Operator Theory: Advances and Applications, 81. Birkhäuser Verlag, Basel, 1996. MR 1384981 (97f:47022)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47L80, 47B35, 47B20, 46L07

Retrieve articles in all journals with MSC (2000): 47L80, 47B35, 47B20, 46L07


Additional Information

Bebe Prunaru
Affiliation: Institute of Mathematics “Simion Stoilow” of the Romanian Academy, P.O. Box 1-764, RO-014700 Bucharest, Romania
Email: Bebe.Prunaru@imar.ro

DOI: https://doi.org/10.1090/S0002-9939-07-08893-4
Keywords: Toeplitz operators, Toeplitz algebras, spectral inclusion, spherical isometry, completely positive projection, injective operator spaces, strictly pseudoconvex domains
Received by editor(s): April 3, 2006
Received by editor(s) in revised form: August 22, 2006
Published electronically: August 1, 2007
Additional Notes: This research was partially supported by the Romanian Ministry of Education and Research, through the grant CEx05-D11-23/2005
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society