Index estimates for minimal surfaces and -convexity

Author:
Ailana Fraser

Journal:
Proc. Amer. Math. Soc. **135** (2007), 3733-3744

MSC (2000):
Primary 58E12; Secondary 53C21

Published electronically:
August 2, 2007

MathSciNet review:
2336590

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove Morse index estimates for the area functional for minimal surfaces that are solutions to the free boundary problem in -convex domains in manifolds of nonnegative complex sectional curvature.

**[Fr1]**Theodore Frankel,*Manifolds with positive curvature*, Pacific J. Math.**11**(1961), 165–174. MR**0123272****[Fr2]**T. Frankel,*On the fundamental group of a compact minimal submanifold*, Ann. of Math. (2)**83**(1966), 68–73. MR**0187183****[F1]**Ailana M. Fraser,*On the free boundary variational problem for minimal disks*, Comm. Pure Appl. Math.**53**(2000), no. 8, 931–971. MR**1755947**, 10.1002/1097-0312(200008)53:8<931::AID-CPA1>3.3.CO;2-0**[F2]**Ailana M. Fraser,*Minimal disks and two-convex hypersurfaces*, Amer. J. Math.**124**(2002), no. 3, 483–493. MR**1902886****[F3]**Ailana M. Fraser,*Fundamental groups of manifolds with positive isotropic curvature*, Ann. of Math. (2)**158**(2003), no. 1, 345–354. MR**1999925**, 10.4007/annals.2003.158.345**[FW]**Ailana Fraser and Jon Wolfson,*The fundamental group of manifolds of positive isotropic curvature and surface groups*, Duke Math. J.**133**(2006), no. 2, 325–334. MR**2225695**, 10.1215/S0012-7094-06-13325-2**[HS]**G. Huisken, C. Sinestrari, Mean curvature flow with surgeries of two-convex hypersurfaces, Preprint.**[MN]**Francesco Mercuri and Maria Helena Noronha,*Low codimensional submanifolds of Euclidean space with nonnegative isotropic curvature*, Trans. Amer. Math. Soc.**348**(1996), no. 7, 2711–2724. MR**1348153**, 10.1090/S0002-9947-96-01589-9**[I]**Jin-ichi Itoh,*𝑝-convex domains in 𝑅ⁿ*, Geometry of manifolds (Matsumoto, 1988) Perspect. Math., vol. 8, Academic Press, Boston, MA, 1989, pp. 275–279. MR**1040529**, 10.1080/0907676X.2000.9961396**[J]**Jürgen Jost,*Two-dimensional geometric variational problems*, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1991. A Wiley-Interscience Publication. MR**1100926****[L]**H. Blaine Lawson Jr.,*The unknottedness of minimal embeddings*, Invent. Math.**11**(1970), 183–187. MR**0287447****[McS]**Dusa McDuff and Dietmar Salamon,*Introduction to symplectic topology*, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. MR**1698616****[MM]**Mario J. Micallef and John Douglas Moore,*Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes*, Ann. of Math. (2)**127**(1988), no. 1, 199–227. MR**924677**, 10.2307/1971420**[MS]**John Douglas Moore and Thomas Schulte,*Minimal disks and compact hypersurfaces in Euclidean space*, Proc. Amer. Math. Soc.**94**(1985), no. 2, 321–328. MR**784186**, 10.1090/S0002-9939-1985-0784186-7**[SU]**J. Sacks and K. Uhlenbeck,*The existence of minimal immersions of 2-spheres*, Ann. of Math. (2)**113**(1981), no. 1, 1–24. MR**604040**, 10.2307/1971131**[SW]**Richard Schoen and Jon Wolfson,*Theorems of Barth-Lefschetz type and Morse theory on the space of paths*, Math. Z.**229**(1998), no. 1, 77–89. MR**1649314**, 10.1007/PL00004651**[Sh1]**Ji-Ping Sha,*𝑝-convex Riemannian manifolds*, Invent. Math.**83**(1986), no. 3, 437–447. MR**827362**, 10.1007/BF01394417**[Sh2]**Ji-Ping Sha,*Handlebodies and 𝑝-convexity*, J. Differential Geom.**25**(1987), no. 3, 353–361. MR**882828****[Wu]**H. Wu,*Manifolds of partially positive curvature*, Indiana Univ. Math. J.**36**(1987), no. 3, 525–548. MR**905609**, 10.1512/iumj.1987.36.36029

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
58E12,
53C21

Retrieve articles in all journals with MSC (2000): 58E12, 53C21

Additional Information

**Ailana Fraser**

Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2

Email:
afraser@math.ubc.ca

DOI:
http://dx.doi.org/10.1090/S0002-9939-07-08894-6

Received by editor(s):
July 26, 2006

Published electronically:
August 2, 2007

Additional Notes:
The author was partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC)

Communicated by:
Jon G. Wolfson

Article copyright:
© Copyright 2007
American Mathematical Society