Index estimates for minimal surfaces and -convexity

Author:
Ailana Fraser

Journal:
Proc. Amer. Math. Soc. **135** (2007), 3733-3744

MSC (2000):
Primary 58E12; Secondary 53C21

DOI:
https://doi.org/10.1090/S0002-9939-07-08894-6

Published electronically:
August 2, 2007

MathSciNet review:
2336590

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove Morse index estimates for the area functional for minimal surfaces that are solutions to the free boundary problem in -convex domains in manifolds of nonnegative complex sectional curvature.

**[Fr1]**T. Frankel, Manifolds with positive curvature,*Pacific J. Math.***11**(1961), 165-174. MR**0123272 (23:A600)****[Fr2]**T. Frankel, On the fundamental group of a compact minimal submanifold,*Ann. of Math. (2)***83**(1966), 68-73. MR**0187183 (32:4637)****[F1]**A. Fraser, On the free boundary variational problem for minimal disks,*Comm. Pure Appl. Math.***53**(2000), no. 8 931-971. MR**1755947 (2001g:58026)****[F2]**A. Fraser, Minimal disks and two-convex hypersurfaces,*Amer. J. Math.***124**(2002), no. 3 483-493. MR**1902886 (2003d:53104)****[F3]**A. Fraser, Fundamental groups of manifolds of positive isotropic curvature,*Ann. of Math. (2)***158**(2003), no. 1 345-354. MR**1999925 (2004j:53050)****[FW]**A. Fraser, J. Wolfson, The fundamental group of manifolds of positive isotropic curvature and surface groups,*Duke Math. J.***133**(2006), no. 2 325-334. MR**2225695****[HS]**G. Huisken, C. Sinestrari, Mean curvature flow with surgeries of two-convex hypersurfaces, Preprint.**[MN]**F. Mercuri, M. H. Noronha, Low codimensional submanifolds of Euclidean space with nonnegative isotropic curvature,*Trans. Amer. Math. Soc.***348**(1996), no. 7 2711-2724. MR**1348153 (96j:53049)****[I]**J. Itoh, -convex domains in ,*Geometry of manifolds (Matsumoto,*1988), 275-279, Perspect. Math., 8, Academic Press, Boston, 1989. MR**1040529 (91e:53008)****[J]**J. Jost,*Two Dimensional Geometric Variational Problems*, John Wiley and Sons, Ltd., Chichester, (1991). MR**1100926 (92h:58045)****[L]**H. B. Lawson, The unknottedness of minimal embeddings,*Invent. Math.***11**(1970), 183-187. MR**0287447 (44:4651)****[McS]**D. McDuff, D. Salamon,*Introduction to symplectic topology*, Second edition, Oxford University Press, New York (1998). MR**1698616 (2000g:53098)****[MM]**M. Micallef, J. D. Moore, Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes,*Ann. of Math. (2)***127**(1988), no.1 199-227. MR**924677 (89e:53088)****[MS]**J. D. Moore, T. Schulte, Minimal disks and compact hypersurfaces in Euclidean space,*Proc. Amer. Math. Soc.***94**(1985), no. 2 321-328. MR**784186 (86h:53057)****[SU]**J. Sacks, K. Uhlenbeck, The existence of minimal immersions of two-spheres,*Ann. of Math. (2)***113**(1981), 1-24. MR**604040 (82f:58035)****[SW]**R. Schoen, J. Wolfson, Theorems of Barth-Lefschetz type and Morse theory on the space of paths,*Math. Z.***229**(1998), no.1 77-89. MR**1649314 (2000i:58021)****[Sh1]**J. Sha, -convex Riemannian manifolds,*Invent. Math.***83**(1986), no. 3 437-447. MR**827362 (87e:53071)****[Sh2]**J. Sha, Handlebodies and -convexity,*J. Differential Geom.***25**(1987), no. 3 353-361. MR**882828 (88f:53079)****[Wu]**H. Wu, Manifolds of partially positive curvature,*Indiana Univ. Math. J.***36**(1987), no. 3 525-548. MR**905609 (88k:53068)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
58E12,
53C21

Retrieve articles in all journals with MSC (2000): 58E12, 53C21

Additional Information

**Ailana Fraser**

Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2

Email:
afraser@math.ubc.ca

DOI:
https://doi.org/10.1090/S0002-9939-07-08894-6

Received by editor(s):
July 26, 2006

Published electronically:
August 2, 2007

Additional Notes:
The author was partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC)

Communicated by:
Jon G. Wolfson

Article copyright:
© Copyright 2007
American Mathematical Society