Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Dimension des familles de courbes lisses sur une surface quartique normale de $ \mathbb{P}3$


Author: Sébastien Guffroy
Journal: Proc. Amer. Math. Soc. 135 (2007), 3499-3505
MSC (2000): Primary 14J17, 14N15
Published electronically: July 27, 2007
MathSciNet review: 2336563
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Dans cette note, on montre que les courbes, lisses connexes, de degré $ d$ et genre $ g$, tracées sur une surface quartique normale variable de $ \myP3$, et n'y étant pas intersection complète, forment des familles de dimensions $ \myle g+33$. Cette majoration est la meilleure possible. Comme application on prouve que le schéma de Hilbert des courbes lisses connexes de $ \mathbb{P}_3$ de degré $ 12$ et genre $ 13$ est irréductible.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14J17, 14N15

Retrieve articles in all journals with MSC (2000): 14J17, 14N15


Additional Information

Sébastien Guffroy
Affiliation: Dipartimento di Matematica, Università degli Studi di Genova, Via Dodecaneso, 35. 16146 Genova, Italia
Email: guffroy@math.univ-lille1.fr

DOI: http://dx.doi.org/10.1090/S0002-9939-07-08966-6
PII: S 0002-9939(07)08966-6
Received by editor(s): June 1, 2005
Received by editor(s) in revised form: August 23, 2006
Published electronically: July 27, 2007
Communicated by: Michael Stillman
Article copyright: © Copyright 2007 American Mathematical Society