Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Decomposing representations of finite groups on Riemann-Roch spaces


Authors: David Joyner and Amy Ksir
Journal: Proc. Amer. Math. Soc. 135 (2007), 3465-3476
MSC (2000): Primary 14H37
DOI: https://doi.org/10.1090/S0002-9939-07-08967-8
Published electronically: July 27, 2007
MathSciNet review: 2336559
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ G$ is a finite subgroup of the automorphism group of a projective curve $ X$ and $ D$ is a divisor on $ X$ stabilized by $ G$, then we compute a simplified formula for the trace of the natural representation of $ G$ on the Riemann-Roch space $ L(D)$, under the assumption that $ L(D)$ is ``rational'', $ D$ is nonspecial, and the characteristic is ``good''. We discuss the partial formulas that result if $ L(D)$ is not rational.


References [Enhancements On Off] (What's this?)

  • [B] N. Borne, ``Une formule de Riemann-Roch equivariante pour des courbes,'' Can. J. Math. 55 (2003), 693-710. MR 1994069 (2004f:14022)
  • [BZ] Ya. G. Berkovich, E.M. Zhmud, Characters of Finite Groups. Translations of Mathematical Monographs 172, American Mathematical Society, 1998. MR 1486039 (98m:20011)
  • [CW] C. Chevalley, A. Weil, ``Über das Verhalten der Integrale erster Gattung bei Automorphismen des Funktionenkörpers,'' Abh. Math. Sem. Univ. Hamburg 10 (1934), 358-361.
  • [D1] R. Donagi, ``Seiberg-Witten integrable systems.'' Algebraic geometry-Santa Cruz 1995, Proc. Sympos. Pure Math., 62(1997), Part 2, 3-43. MR 1492533 (99c:58066)
  • [D2] R. Donagi, ``Spectral covers,'' in Current topics in complex algebraic geometry, MSRI Publ. vol. 28, 1995. MR 1397059 (98e:14007)
  • [E] N. Elkies, ``The Klein quartic in number theory,'' in The Eightfold Way, MSRI Publ. vol. 38, 1998. MR 1363494 (97b:11043)
  • [EL] G. Ellingsrud and K. Lønsted, ``An equivariant Lefschetz formula for finite reductive groups,'' Math Ann 251(1980), 253-261. MR 589254 (81k:14039)
  • [Gap] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.3; 2002, (http://www.gap-system.org).
  • [JK] D. Joyner and A. Ksir, ``Modular representations on some Riemann-Roch spaces of modular curves $ X(N)$,'' in Computational Aspects of Algebraic Curves (Editor: T. Shaska), Lecture Notes in Computing, World Scientific, 2005. MR 2182040 (2006k:11112)
  • [JT] D. Joyner and W. Traves, ``Representations of finite groups on Riemann-Roch spaces,'' preprint. math.AG/0210408
  • [Ka] E. Kani, ``The Galois-module structure of the space of holomorphic differentials of a curve,'' J. Reine Angew. Math. 367 (1986), 187-206. MR 839131 (88f:14024)
  • [Ko] B. Köck, ``Computing the equivariant Euler characteristic of Zariski and étale sheaves on curves,'' Homology Homotopy Appl. 7, No. 3 (2005), 83-98. MR 2205171 (2006k:14025)
  • [Ks] A. Ksir, ``Dimensions of Prym varieties,'' Inter. J. Math. and Math. Sci. 26 (2001), 107-116. math.AG/0007164 MR 1836786 (2002e:14047)
  • [N] S. Nakajima, ``Galois module structure of cohomology groups for tamely ramified coverings of algebraic varieties,'' J. Number Theory 22 (1986) 115-123. MR 821138 (87i:14010)
  • [Se] J.-P. Serre, Linear representations of finite groups, Springer-Verlag, 1977. MR 0450380 (56:8675)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14H37

Retrieve articles in all journals with MSC (2000): 14H37


Additional Information

David Joyner
Affiliation: Mathematics Department, United States Naval Academy, Annapolis, Maryland 21402
Email: wdj@usna.edu

Amy Ksir
Affiliation: Mathematics Department, United States Naval Academy, Annapolis, Maryland 21402
Email: ksir@usna.edu

DOI: https://doi.org/10.1090/S0002-9939-07-08967-8
Received by editor(s): February 10, 2004
Received by editor(s) in revised form: August 21, 2006
Published electronically: July 27, 2007
Additional Notes: The first author was supported in part by an NSA-MSP grant.
The second author was supported in part by a USNA-NARC grant.
Communicated by: Michael Stillman
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society