A SHARP VANISHING THEOREM FOR LINE BUNDLES
ON K3 OR ENRIQUES SURFACES

ANDREAS LEOPOLD KNUTSEN AND ANGELO FELICE LOPEZ

Abstract. Let L be a line bundle on a K3 or Enriques surface. We give a vanishing theorem for $H^1(L)$ that, unlike most vanishing theorems, gives necessary and sufficient geometrical conditions for the vanishing. This result is essential in our study of Brill-Noether theory of curves on Enriques surfaces (2006) and of Enriques-Fano threefolds (2006 preprint).

1. Introduction

Since Grothendieck’s introduction of basic tools such as the cohomology of sheaves and the Grothendieck-Riemann-Roch theorem, vanishing theorems have proved to be essential in many studies in algebraic geometry.

Perhaps the most influential one, at least for line bundles, is the well-known Kawamata-Viehweg vanishing theorem ([K, V]) which, in its simplest form, asserts that $H^i(K_X + L) = 0$ for $i > 0$ and any big and nef line bundle L on a smooth variety X. On the other hand, as most vanishing theorems (even for special surfaces [CD, Thm.1.5.1]), it gives only sufficient conditions for the vanishing. Practice shows though that, in many situations, it would be very useful to know that a certain vanishing is equivalent to some geometrical/numerical properties of L.

In this short note we accomplish the above goal for line bundles on a K3 or Enriques surface, by proving that, when $L^2 > 0$, the vanishing of $H^1(L)$ is equivalent to the fact that the intersection of L with all effective divisors of self-intersection -2 is at least -1.

In the statement of the theorem we will employ the following

Definition 1.1. Let X be a smooth surface. We will denote by \sim (respectively \equiv) the linear (respectively numerical) equivalence of divisors (or line bundles) on X. We will say that a line bundle L is primitive if $L \equiv kL'$ for some line bundle L' and some integer k implies $k = \pm 1$.

Theorem. Let X be a K3 or an Enriques surface and let L be a line bundle on X such that $L > 0$ and $L^2 \geq 0$. Then $H^1(L) \neq 0$ if and only if one of the three following occurs:

Received by the editors December 15, 2005 and, in revised form, August 22, 2006.

2000 Mathematics Subject Classification. Primary 14F17, 14J28; Secondary 14C20.

The research of the first author was partially supported by a Marie Curie Intra-European Fellowship within the 6th European Community Framework Programme.

The research of the second author was partially supported by the MIUR national project “Geometria delle varietà algebriche” COFIN 2002-2004.
(i) \(L \sim nE \) for \(E > 0 \) nef and primitive with \(E^2 = 0 \), \(n \geq 2 \) and \(h^1(L) = n - 1 \)
if \(X \) is a K3 surface, \(h^1(L) = \left\lfloor \frac{n}{2} \right\rfloor \) if \(X \) is an Enriques surface;
(ii) \(L \sim nE + K_X \) for \(E > 0 \) nef and primitive with \(E^2 = 0 \), \(X \) is an Enriques
surface, \(n \geq 3 \) and \(h^1(L) = \left\lfloor \frac{n-1}{2} \right\rfloor \);
(iii) there is a divisor \(\Delta > 0 \) such that \(\Delta^2 = -2 \) and \(\Delta \cdot L \leq -2 \).

Note that the hypothesis \(L > 0 \) is not restrictive since, if \(L \) is nontrivial, from
\(L^2 \geq 0 \) we get by Riemann-Roch that either \(L > 0 \) or \(K_X - L > 0 \), and \(h^1(L) = h^1(K_X - L) \) by Serre duality.

The theorem has of course many possible applications. For example, if \(L \) is
base-point free and \(|P| \) is an elliptic pencil on \(X \), the knowledge of \(h^0(L - nP) \) for
\(n \geq 1 \) (which follows by Riemann-Roch if we know that \(h^1(L - nP) = 0 \)) determines
the type of scroll spanned by the divisors of \(|P| \) in \(\mathbb{P}H^0(L) \) and containing \(\varphi_L(X) \)
([SD, KJ, Co]). Most importantly for us, this result proves crucial in our study
of the Brill-Noether theory [KL1, KL2] and Gaussian maps [KL3] of curves lying
on an Enriques surface, and especially in our proof of a genus bound for threefolds
having an Enriques surface as a hyperplane section given in [KLM].

2. Proof of the Theorem

We first record the following simple but useful fact.

Lemma 2.1. Let \(X \) be a smooth surface and let \(A > 0 \) and \(B > 0 \) be divisors on
\(X \) such that \(A^2 \geq 0 \) and \(B^2 \geq 0 \). Then \(A.B \geq 0 \) with equality if and only if there
exists a primitive divisor \(F > 0 \) and integers \(a \geq 1, b \geq 1 \) such that \(F^2 = 0 \) and
\(A \equiv aF, B \equiv bF \).

Proof. The first assertion follows from the signature theorem [BPV, VIII.1]. If
\(A.B = 0 \), then we cannot have \(A^2 > 0 \), otherwise the Hodge index theorem implies
the contradiction \(B \equiv 0 \). Therefore \(A^2 = B^2 = 0 \). Now let \(H \) be an ample
line bundle on \(X \) and set \(\alpha = A.H, \beta = B.H \). We have \((\beta A - \alpha B)^2 = 0 \) and
\((\beta A - \alpha B).H = 0 \), therefore \(\beta A \equiv \alpha B \) by the Hodge index theorem. As there is no
torsion in \(\text{Num}(X) \) we can find a divisor \(F \) as claimed. \(\square \)

We now proceed with the theorem.

Proof. One immediately sees that \(h^1(L) \) has the given values in (i) and (ii). In the
case (iii) we first observe that \(h^2(L - \Delta) = 0 \). In fact \((K_X - L + \Delta)^2 > 0 \), whence if
\(K_X - L + \Delta \geq 0 \) the signature theorem [BPV, VIII.1] implies \(0 \leq L.(K_X - L + \Delta) =
-2L^2 + L \cdot \Delta \leq -2 \), a contradiction. Therefore by Riemann-Roch we get
\[
\frac{1}{2}L^2 + \chi(O_X) < \frac{1}{2}L^2 - \Delta \cdot L + 1 + \chi(O_X) \leq h^0(L - \Delta) \leq h^0(L) = \frac{1}{2}L^2 + \chi(O_X) + h^1(L)
\]
whence \(h^1(L) > 0 \).

Now assume that \(h^1(L) > 0 \).

First we suppose that \(L \) is nef. By Riemann-Roch we have that \(L + K_X > 0 \).
Since \(h^1(-L + K_X)) = h^1(L) > 0 \), by [BPV, Lemma12.2], we deduce that \(L + K_X \)
is not 1-connected, whence that there exist \(L' > 0 \) and \(L'' > 0 \) such that \(L + K_X \sim
L' + L'' \) and \(L'.L'' \leq 0 \). Now \((L')^2 \geq (L')^2 + L'.L'' = L'.L \geq 0 \) and similarly
\((L'')^2 \geq 0 \), whence Lemma 2.1 implies that \(L' \equiv aE, L'' \equiv bE \) for some \(a, b \geq 1 \)
and for \(E > 0 \) nef and primitive with \(E^2 = 0 \). This gives us the two cases (i) and
(ii).
Now assume that L is not nef, so that the set
$$\mathcal{A}_1(L) := \{ \Delta > 0 : \Delta^2 = -2, \Delta.L \leq -1 \}$$
is not empty. Similarly define the set
$$\mathcal{A}_2(L) = \{ \Delta > 0 : \Delta^2 = -2, \Delta.L \leq -2 \}.$$

If $\mathcal{A}_2(L) \neq \emptyset$ we are done. Assume therefore that $\mathcal{A}_2(L) = \emptyset$ and pick $\Gamma \in \mathcal{A}_1(L)$. Then $\Gamma.L = -1$, and we can clearly assume that Γ is irreducible. Hence if we set $L_1 = L - \Gamma$ we have that $L_1 > 0$, $L_1^2 = L^2$ and, since $h^0(L_1) = h^0(L)$, also that $h^1(L_1) = h^1(L) > 0$.

If L_1 is nef, by what we have just seen, we have $L_1 \equiv nE$, for $n \geq 2$, whence $L \equiv nE + \Gamma$ and $-1 = \Gamma.L = nE.\Gamma = -2$, a contradiction.

Therefore L_1 is not nef and $\mathcal{A}_1(L_1) \neq \emptyset$.

If $\mathcal{A}_2(L_1) \neq \emptyset$ we pick a $\Delta \in \mathcal{A}_2(L_1)$. We have $-2 \geq \Delta.L_1 = \Delta.(L - \Gamma) \geq -1 - \Delta.\Gamma$, whence $\Delta.\Gamma \geq 1$, $(\Delta + \Gamma)^2 \geq -2$ and $(\Delta + \Gamma).L_1 \leq -1$. Now Lemma 2.3 yields $(\Delta + \Gamma)^2 = -2$, so that $\Delta.\Gamma = 1$. Also $-1 \leq \Delta.L = \Delta.(L_1 + \Gamma) \leq -1$, whence $\Delta.L = -1$ and $(\Delta + \Gamma).L = -2$, contradicting $\mathcal{A}_2(L) = \emptyset$.

We have therefore shown that $\mathcal{A}_2(L_1) = \emptyset$.

This means that we can continue the process. But the process must eventually stop, since we always remove base components. This gives the desired contradiction.

\[\square \]

Remark 2.2. A naive guess, to insure the vanishing of $H^1(L)$ for a line bundle $L > 0$ with $L^2 \geq 0$, could be that it is enough to add the hypothesis $L.R \geq -1$ for every irreducible rational curve R. However this is not true. Take, for example, a nef divisor B with $B^2 \geq 4$ and two irreducible rational curves R_1, R_2 such that $B.R_i = 0$, $R_1.R_2 = 1$. Then $L := B + R_1 + R_2$ satisfies the above requirements, but $L.(R_1 + R_2) = -2$, whence $H^1(L) \neq 0$ by the theorem.

Remark 2.3. It would be of interest to know if, in the statement of the theorem, it is possible to replace divisors $\Delta > 0$ such that $\Delta^2 = -2$ with chains of irreducible rational curves.

Definition 2.4. An effective line bundle L on a K3 or Enriques surface is said to be quasi-nef if $L^2 \geq 0$ and $L.\Delta \geq -1$ for every Δ such that $\Delta > 0$ and $\Delta^2 = -2$.

An immediate consequence of the theorem is

Corollary 2.5. An effective line bundle L on a K3 or Enriques surface is quasi-nef if and only if $L^2 \geq 0$ and either $h^1(L) = 0$ or $L \equiv nE$ for some $n \geq 2$ and some primitive and nef divisor E with $E^2 = 0$.

Acknowledgments
The authors wish to thank Roberto Muñoz for several helpful discussions.

References

Dipartimento di Matematica, Universit`a di Roma Tre, Largo San Leonardo Murialdo 1, 00146, Roma, Italy

E-mail address: knutsen@mat.uniroma3.it

Dipartimento di Matematica, Università di Roma Tre, Largo San Leonardo Murialdo 1, 00146, Roma, Italy

E-mail address: lopez@mat.uniroma3.it