Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A criterion for the logarithmic differential operators to be generated by vector fields

Author: Mathias Schulze
Journal: Proc. Amer. Math. Soc. 135 (2007), 3631-3640
MSC (2000): Primary 32C38, 13A30
Published electronically: August 7, 2007
MathSciNet review: 2336579
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study divisors in a complex manifold in view of the property that the algebra of logarithmic differential operators along the divisor is generated by logarithmic vector fields. We give

  • a sufficient criterion for the property,
  • a simple proof of F.J. Calderón-Moreno's theorem that free divisors have the property,
  • a proof that divisors in dimension $ 3$ with only isolated quasi-homogeneous singularities have the property,
  • an example of a nonfree divisor with nonisolated singularity having the property,
  • an example of a divisor not having the property, and
  • an algorithm to compute the V-filtration along a divisor up to a given order.

References [Enhancements On Off] (What's this?)

  • [CM99] Francisco J. Calderón-Moreno, Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor, Ann. Sci. École Norm. Sup. (4) 32 (1999), no. 5, 701-714. MR 1710757 (2000g:32010)
  • [CMNM05] Francisco Javier Calderón-Moreno and Luis Narváez-Macarro, Dualité et comparaison sur les complexes de de Rham logarithmiques par rapport aux diviseurs libres, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 1, 47-75. MR 2141288 (2006d:32008)
  • [GP02] Gert-Martin Greuel and Gerhard Pfister, A Singular introduction to commutative algebra, Springer-Verlag, Berlin, 2002, With contributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann, With 1 CD-ROM (Windows, Macintosh, and UNIX). MR 1930604 (2003k:13001)
  • [GPS05] G.-M. Greuel, G. Pfister, and H. Schönemann, SINGULAR 3.0, A Computer Algebra System for Polynomial Computations, Centre for Computer Algebra, University of Kaiserslautern, 2005,
  • [Hun81] Craig Huneke, On the symmetric algebra of a module, J. Algebra 69 (1981), no. 1, 113-119. MR 613861 (82d:13016)
  • [Meb89] Z. Mebkhout, Le formalisme des six opérations de Grothendieck pour les $ D_X$-modules cohérents, Travaux en Cours [Works in Progress], vol. 35, Hermann, Paris, 1989, With supplementary material by the author and L. Narváez-Macarro. MR 1008245 (90m:32026)
  • [Sai80] Kyoji Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 2, 265-291. MR 586450 (83h:32023)
  • [Sch61] Günter Scheja, Riemannsche Hebbarkeitssätze für Cohomologieklassen, Math. Ann. 144 (1961), 345-360. MR 0148941 (26:6437)
  • [Tor04] Tristan Torrelli, On meromorphic functions defined by a differential system of order 1, Bull. Soc. Math. France 132 (2004), no. 4, 591-612. MR 2131905 (2005m:32015)
  • [Wie01] Jonathan Wiens, The module of derivations for an arrangement of subspaces, Pacific J. Math. 198 (2001), no. 2, 501-512. MR 1835521 (2002d:14090)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 32C38, 13A30

Retrieve articles in all journals with MSC (2000): 32C38, 13A30

Additional Information

Mathias Schulze
Affiliation: Department of Mathematics, Oklahoma State University, 401 MSCS, Stillwater, Oklahoma 74078

Keywords: Free divisor, hyperplane arrangement, logarithmic differential operator, symmetric algebra, V-filtration
Received by editor(s): September 16, 2005
Received by editor(s) in revised form: September 2, 2006
Published electronically: August 7, 2007
Additional Notes: The author is grateful to M. Granger for many valuable discussions and comments and to F.J. Castro-Jiménez, L. Narváez-Macarro, and J.M. Ucha-Enríquez for explaining their results and ideas.
Communicated by: Michael Stillman
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society