SUB- AND SUPERADDITIVE PROPERTIES
OF EULER’S GAMMA FUNCTION

HORST ALZER

(Communicated by Andreas Seeger)

ABSTRACT. Let \(\alpha > 0 \) and \(0 < c \neq 1 \) be real numbers. The inequality
\[
\left(\frac{\Gamma(x + y + c)}{\Gamma(x + y)} \right)^{1/\alpha} < \left(\frac{\Gamma(x + c)}{\Gamma(x)} \right)^{1/\alpha} + \left(\frac{\Gamma(y + c)}{\Gamma(y)} \right)^{1/\alpha}
\]
holds for all positive real numbers \(x, y \) if and only if \(\alpha \geq \max(1, c) \). The reverse
inequality is valid for all \(x, y > 0 \) if and only if \(\alpha \leq \min(1, c) \).

1. Introduction

A real function \(F \) defined on a set \(S \subset \mathbb{R}^n \) is called subadditive, if
\[
F(x + y) \leq F(x) + F(y)
\]
for all \(x, y \in S \) with \(x + y \in S \). If inequality (1.1) is strict, then \(F \) is said to be
strictly subadditive. Moreover, if \(-F \) is subadditive, then \(F \) is called superadditive.
Many interesting properties of these functions can be found in the research articles
[5]–[11], [13], [17], [18]–[21], [24], [26], [29].

Sub- and superadditive functions have important applications in various fields,
like functional analysis and semi-group theory [16], theory of differential equations
[18], theory of convex sets [22], and statistics [28]. Moreover, sub- and superadditive
problems are discussed in the theory of functional inequalities [12], [27], in number
theory [14], [25], in the theory of trigonometric polynomials [3], and also in the
theory of special functions [2], [4], [28].

It is the aim of this paper to study sub- and superadditive properties of Euler’s
gamma function,
\[
\Gamma(x) = \int_0^\infty e^{-t}t^{x-1}dt \quad (x > 0).
\]
More precisely, we consider the function
\[
f_{\alpha,c}(x) = \left(\frac{\Gamma(x + c)}{\Gamma(x)} \right)^{1/\alpha} \quad (\alpha > 0, c > 0; \; x > 0).
\]
It is our aim to determine all parameters \(\tilde{\alpha}, \tilde{c} \) and \(\alpha^*, c^* \) such that the inequalities
\[
f_{\tilde{\alpha},\tilde{c}}(x + y) < f_{\tilde{\alpha},\tilde{c}}(x) + f_{\tilde{\alpha},\tilde{c}}(y) \quad \text{and} \quad f_{\alpha^*,c^*}(x) + f_{\alpha^*,c^*}(y) < f_{\alpha^*,c^*}(x + y)
\]
are valid for all \(x, y > 0\). To solve this problem we need some lemmas, which we collect in the next section. Our main result is presented in Section 3.

In the recent past, several remarkable inequalities involving the gamma function and its relatives were published. An excellent account on this subject with a detailed bibliography is given in the survey paper [15].

2. Lemmas

The psi (or digamma) function is defined by

\[
\psi(x) = (\log \Gamma(x))' = \frac{\Gamma'(x)}{\Gamma(x)}.
\]

The following facts can be found in [1, Chapter 6].

Lemma 1. Let \(n \geq 1\) be an integer, \(x > 0\) a real number, and \(\gamma = 0.5772\ldots\) Euler’s constant. Then we have

\[
\psi(x) = -\gamma + \int_0^\infty \frac{e^{-t} - e^{-xt}}{1 - e^{-t}} \, dt \quad \text{and} \quad \psi^{(n)}(x) = (-1)^{n+1} \int_0^\infty e^{-xt} t^n \frac{1}{1 - e^{-t}} \, dt.
\]

Lemma 2. We have for \(x \to \infty\):

\[
x^{b-a} \frac{\Gamma(x+a)}{\Gamma(x+b)} \sim 1 + \frac{(a-b)(a+b-1)}{2x} + \cdots,
\]

\[
\psi(x) \sim \log x - \frac{1}{2x} - \frac{1}{12x^2} + \cdots,
\]

\[
\psi^{(n)}(x) \sim (-1)^{n+1} \left[\frac{(n-1)!}{x^n} + \frac{n!}{2x^{n+1}} + \cdots \right] \quad (n = 1, 2, \ldots).
\]

Lemma 3. Let \(n \geq 0\) be an integer and \(x > 0\) a real number. Then we have

\[
\psi^{(n)}(x + 1) = \psi^{(n)}(x) + (-1)^n \frac{n!}{x^{n+1}}.
\]

The next result is due to Petrović [23, pp. 22-23].

Lemma 4. Let \(f : [0, \infty) \to \mathbb{R}\) be strictly convex. Then we have for \(x, y > 0\):

\[
f(x) + f(y) < f(x + y) + f(0).
\]

If \(f\) is strictly concave, then the reverse inequality holds.

We also need an elementary monotonicity lemma.

Lemma 5. Let \(r \in (0, 1)\) and

\[
G_r(u, c) = \frac{(1 - r^{c(1+u)})(1 - r^{c(1-u)})}{(1 - r^{1+u})(1 - r^{1-u})}.
\]

If \(0 < c < 1\), then \(u \mapsto G_r(u, c)\) is strictly decreasing on \((0, 1)\). And, if \(c > 1\), then \(u \mapsto G_r(u, c)\) is strictly increasing on \((0, 1)\).

Proof. Let \(u \in (0, 1), c > 0\), and \(H_r(u, c) = \log G_r(u, c)\). Partial differentiation gives

\[
\frac{\partial}{\partial u} H_r(u, c) = (\log r) \left[\frac{c}{r-c(1-u)} - 1 - \frac{c}{r-c(1+u)} - 1 - \frac{1}{r^{(1-u)} - 1} + \frac{1}{r^{-(1+u)} - 1} \right].
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
and
\[(2.7) \quad \frac{\partial^2}{\partial u \partial c} H_r(u, c) = (\log r)[p(y) - p(z)], \]

where
\[p(x) = \frac{1}{x} - \frac{x \log x}{(x - 1)^2}, \quad y = r^{-c(1-u)}, \quad z = r^{-c(1+u)}. \]

Let \(x > 1 \) and
\[q(x) = \frac{(x-1)^3}{x+1} p'(x) = \log x - \frac{2(x-1)}{x+1}. \]

We have
\[q'(x) = \frac{1}{x} \left(\frac{x-1}{x+1} \right)^2 > 0 \quad \text{and} \quad q(1) = 0. \]

This implies that \(p \) is strictly increasing on \((1, \infty)\). Since \(1 < y < z \), we obtain \(p(y) < p(z) \), so that (2.7) leads to
\[\frac{\partial^2}{\partial u \partial c} H_r(u, c) > 0. \]

It follows that \(c \mapsto (\partial/\partial u)H_r(u, c) \) is strictly increasing on \((0, \infty)\) with \((\partial/\partial u)H_r(u, 1) = 0\). This implies that \((\partial/\partial u)H_r(u, c)\) is negative if \(0 < c < 1 \), \(0 < u < 1 \), and that \((\partial/\partial u)H_r(u, c)\) is positive if \(c > 1 \), \(0 < u < 1 \).

The final two lemmas provide properties of functions, which are defined in terms of \(\psi \) and \(\psi' \).

Lemma 6. Let
\[(2.8) \quad \phi_c(x) = \frac{\psi'(x) - \psi'(x + c)}{[\psi(x + c) - \psi(x)]^2}. \]

If \(0 < c < 1 \), then \(\phi_c \) is strictly increasing on \((0, \infty)\). And, if \(c > 1 \), then \(\phi_c \) is strictly decreasing on \((0, \infty)\).

Proof. From Lemma 1 we conclude that \(\phi_c(x) \) is positive for \(x, c > 0 \). We define
\[g_c(x) = \log \phi_c(x). \]

Differentiation yields
\[(2.9) \quad [\psi'(x) - \psi'(x + c)][\psi(x + c) - \psi(x)]g_c'(x) \]
\[= [\psi(x + c) - \psi(x)][\psi''(x) - \psi''(x + c)] + 2[\psi'(x) - \psi'(x + c)]^2 = h_c(x), \quad \text{say}. \]

Using (2.1) we obtain the integral representations
\[(2.10) \quad \psi(x + c) - \psi(x) = \int_0^\infty e^{-xt} \Delta_c(t) dt, \]
\[(2.11) \quad \psi'(x + c) - \psi'(x) = -\int_0^\infty e^{-xt} t \Delta_c(t) dt, \]
and
\[(2.12) \quad \psi''(x + c) - \psi''(x) = \int_0^\infty e^{-xt} t^2 \Delta_c(t) dt \]
with
\[(2.13) \quad \Delta_c(t) = \frac{1 - e^{-ct}}{1 - e^{-t}}. \]
Next, we apply the convolution theorem for Laplace transforms. We get
\[h_c(x) = -\int_0^\infty e^{-xt} \Delta_c(t) dt \int_0^\infty e^{-xt} t^2 \Delta_c(t) dt + 2 \left(\int_0^\infty e^{-xt} t \Delta_c(t) dt \right)^2 \]
\[= -\int_0^\infty e^{-xt} \int_0^t s^2 \Delta_c(s) \Delta_c(t-s) ds dt \]
\[+ 2 \int_0^\infty e^{-xt} \int_0^t s(t-s) \Delta_c(s) \Delta_c(t-s) ds dt \]
\[= \int_0^\infty e^{-xt} I_c(t) dt, \]
where
\[I_c(t) = \int_0^t s(2t-s) \Delta_c(s) \Delta_c(t-s) ds \quad (t > 0). \]
The substitution \(s = t(1+u)/2 \) yields
\[(2/t)^3 I_c(t) = \int_{-1}^1 (1 - 2u - 3u^2) \Delta_c(t(1+u)/2) \Delta_c(t(1-u)/2) du \]
\[= \int_{-1}^1 (1 - 3u^2) \Delta_c(t(1+u)/2) \Delta_c(t(1-u)/2) du \]
\[= 2 \int_0^1 (1 - 3u^2) \Delta_c(t(1+u)/2) \Delta_c(t(1-u)/2) du \]
\[= 2 \int_0^1 (1 - 3u^2) G_r(u, c) du, \]
where \(G_r(u, c) \) is defined in (2.6) and \(r = e^{-t/2} \in (0, 1) \). We distinguish two cases.
Case 1. \(0 < c < 1 \).
Applying Lemma 5 gives for \(0 < u < 1, \ u \neq 1/\sqrt{3} \):
\[(1 - 3u^2) G_r(u, c) > (1 - 3u^2) G_r(1/\sqrt{3}, c). \]
This leads to
\[\int_0^1 (1 - 3u^2) G_r(u, c) du > G_r(1/\sqrt{3}, c) \int_0^1 (1 - 3u^2) du = 0. \]
Combining (2.14)-(2.16) we conclude that \(h_c(x) > 0 \) for \(x > 0 \). It follows from (2.9) that \(g_c \) is strictly increasing on \((0, \infty) \).
Case 2. \(c > 1 \).
Lemma 5 yields for \(0 < u < 1, \ u \neq 1/\sqrt{3} \):
\[(1 - 3u^2) G_r(u, c) < (1 - 3u^2) G_r(1/\sqrt{3}, c), \]
which implies
\[\int_0^1 (1 - 3u^2) G_r(u, c) du < G_r(1/\sqrt{3}, c) \int_0^1 (1 - 3u^2) du = 0. \]
From (2.9), (2.14), (2.15), and (2.17) we obtain that \(g_c \) is strictly decreasing on \((0, \infty) \). \(\square \)
Lemma 7. Let \(x > 0 \) and
\[
\delta_c(x) = \psi'(x) - \psi'(x + c) - [\psi(x) - \psi(x + c)]^2.
\]
If \(0 < c < 1 \), then \(\delta_c(x) > 0 \). And, if \(c > 1 \), then \(\delta_c(x) < 0 \).

Proof. First, we assume that \(0 < c < 1 \). Using (2.10)-(2.13) we obtain for \(x > 0 \):
\[
\delta_c(x) = \psi''(x) - \psi''(x + c) - 2[\psi(x) - \psi(x + c)][\psi'(x) - \psi'(x + c)] = \int_0^\infty e^{-xt} J_c(t) dt
\]
with
\[
J_c(t) = 2 \int_0^t s \Delta_c(s) \Delta_c(t - s) ds - t^2 \Delta_c(t) \quad (t > 0).
\]
The substitution \(s = t(1 + u)/2 \) leads to
\[
(1/t^2)J_c(t) = \int_0^{1/2} \Delta_c(t(1+u)/2) \Delta_c(t(1-u)/2) du - \Delta_c(t) = \int_0^1 [G_r(u, c) - \Delta_c(t)] du,
\]
where \(G_r(u, c) \) is defined in (2.6) and \(r = e^{-t/2} \in (0,1) \). Applying Lemma 5 gives for \(u \in (0,1) \) and \(t > 0 \):
\[
G_r(u, c) < G_r(0, c) = \left(\frac{1 - e^{-ct/2}}{1 - e^{-t/2}} \right)^2 < \frac{1 - e^{-ct}}{1 - e^{-t}} = \Delta_c(t).
\]
From (2.19) and (2.20) we conclude that \(J_c \) is negative on \((0, \infty)\), so that (2.18) implies that \(\delta_c \) is strictly decreasing on \((0, \infty)\). Applying (2.3) and (2.4) yields
\[
\lim_{x \to \infty} \delta_a(x) = 0 \quad (a > 0).
\]
This leads to \(\delta_c(x) > 0 \) for \(x > 0 \).

If \(c > 1 \), then we obtain (2.20) with ‘\(> \)’ instead of ‘\(< \)’. This implies that \(J_c \) is positive on \((0, \infty)\). It follows from (2.18) and (2.21) that \(\delta_c(x) < 0 \) for \(x > 0 \). \(\square \)

3. Main result

The following convexity theorem might be of independent interest. Moreover, it is an important tool in the proof of our main result, given in Theorem 2.

Theorem 1. Let \(f_{\alpha,c} \) be the function defined in (1.2), where \(\alpha > 0 \) and \(0 < c \neq 1 \).
We have \(f_{\alpha,c}''(x) > 0 \) for all \(x > 0 \) if and only if \(\alpha \leq \min(1,c) \). Moreover, \(f_{\alpha,c}''(x) < 0 \) holds for all \(x > 0 \) if and only if \(\alpha \geq \max(1,c) \).

Proof. We have
\[
-\alpha^2 \frac{f_{\alpha,c}''(x)}{f_{\alpha,c}'(x)} = \mu_{\alpha,c}(x) - \nu_c(x),
\]
where
\[
\mu_{\alpha,c}(x) = \alpha[\psi'(x) - \psi'(x + c)] \quad \text{and} \quad \nu_c(x) = [\psi(x) - \psi(x + c)]^2.
\]
We consider two cases.
Case 1. \(\alpha \leq \min(1,c) \).
We distinguish two subcases.
Case 1.1. \(\min(1,c) = 1 \).
Then we obtain \(\alpha \leq 1 < c \). Applying Lemma 7 gives
\[
\mu_{\alpha,c}(x) - \nu_c(x) \leq \psi'(x) - \psi'(x + c) - [\psi(x) - \psi(x + c)]^2 = \delta_c(x) < 0.
\]
From (3.1) and (3.2) we get \(f_{\alpha,c}''(x) > 0 \) for \(x > 0 \).
Case 1.2. min\((1,c) = c\).
Then, \(\alpha \leq c < 1\). Let

\[
\sigma_{\alpha,c}(x) = \log \mu_{\alpha,c}(x) - \log \nu_{c}(x).
\]

Then we have

\[
\sigma_{\alpha,c}(x) = \log \alpha + \log \phi_{c}(x),
\]

where \(\phi_{c}\) is defined in (2.8). It follows from Lemma 6 that \(\sigma_{\alpha,c}\) is strictly increasing on \((0,\infty)\). Applying (2.3) and (2.4) we obtain the limit relations

\[
\lim_{x \to \infty} x[\psi(x + c) - \psi(x)] = \lim_{x \to \infty} x^{2}[\psi'(x) - \psi'(x + c)] = c.
\]

This leads to

\[
\lim_{x \to \infty} \sigma_{\alpha,c}(x) = \lim_{x \to \infty} \log \frac{\alpha x^{2}[\psi'(x) - \psi'(x + c)]}{(x[\psi(x + c) - \psi(x)])^{2}} = \log (\alpha/c) \leq 0.
\]

Thus, \(\sigma_{\alpha,c}\) is negative on \((0,\infty)\). From (3.1) and (3.3) we conclude that \(f''_{\alpha,c}\) is positive on \((0,\infty)\).

Case 2. \(\alpha \geq \max(1,c)\).
Again, we consider two subcases.
Case 2.1. \(\max(1,c) = 1\).
We have \(c < 1 \leq \alpha\). It follows from Lemma 7 that

\[
\mu_{\alpha,c}(x) - \nu_{c}(x) \geq \psi'(x) - \psi'(x + c) - [\psi(x) - \psi(x + c)]^{2} = \delta_{c}(x) > 0.
\]

Applying (3.1) and (3.5) we obtain \(f''_{\alpha,c}(x) < 0\).

Case 2.2. \(\max(1,c) = c\).
Then, \(1 < c \leq \alpha\). Using Lemma 6 gives that \(\sigma_{\alpha,c}\) is strictly decreasing on \((0,\infty)\) with

\[
\lim_{x \to \infty} \sigma_{\alpha,c}(x) = \log (\alpha/c) \geq 0.
\]

This implies that \(\sigma_{\alpha,c}(x) > 0\) for \(x > 0\), so we obtain that \(f''_{\alpha,c}\) is negative on \((0,\infty)\).

It remains to show: if \(f''_{\alpha,c}(x) > 0\) for \(x > 0\), then \(\alpha \leq \min(1,c)\). And, if \(f''_{\alpha,c}(x) < 0\) for \(x > 0\), then \(\alpha \geq \max(1,c)\). First, we assume that \(f''_{\alpha,c}\) is positive on \((0,\infty)\). Then we get

\[
(x[\psi(x + c) - \psi(x)])^{2} > \alpha x^{2}[\psi'(x) - \psi'(x + c)].
\]

Using the recurrence relation (2.5) with \(n = 0\) and \(n = 1\) we conclude that (3.6) is equivalent to

\[
(x[\psi(x + c) - \psi(x + 1)] + 1)^{2} > \alpha + \alpha x^{2}[\psi'(x + 1) - \psi'(x + c)].
\]

We let \(x\) tend to \(\infty\) and apply (3.4). Then (3.6) leads to \(c \geq \alpha\). Next, we let \(x\) tend to \(0\). Then (3.7) yields \(1 \geq \alpha\). Hence, \(\alpha \leq \min(1,c)\). If \(f''_{\alpha,c}(x) < 0\) for \(x > 0\), then we obtain (3.6) and (3.7) with \('<' instead of '>'\). This gives \(c \leq \alpha\) and \(1 \leq \alpha\). Thus, \(\alpha \geq \max(1,c)\). \(\square\)

We are now in a position to determine all positive parameters \(\tilde{\alpha}, \tilde{c}\) and \(\alpha^{*}, c^{*}\) in (1.3).

Theorem 2. Let \(\alpha > 0\) and \(0 < c \neq 1\) be real numbers. The inequality

\[
\left(\frac{\Gamma(x + y + c)}{\Gamma(x + y)}\right)^{1/\alpha} < \left(\frac{\Gamma(x + c)}{\Gamma(x)}\right)^{1/\alpha} + \left(\frac{\Gamma(y + c)}{\Gamma(y)}\right)^{1/\alpha}
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Sub- and Superadditive Properties of Euler’s Gamma Function

holds for all positive real numbers \(x, y \) if and only if \(\alpha \geq \max(1, c) \). The reverse inequality is valid for all \(x, y > 0 \) if and only if \(\alpha \leq \min(1, c) \).

Proof. Let \(f_{\alpha,c} \) be the function defined in (1.2). We have

\[
\lim_{x \to 0} f_{\alpha,c}(x) = 0.
\]

If \(\alpha \geq \max(1, c) \), then Theorem 1 reveals that \(f_{\alpha,c} \) is strictly concave on \([0, \infty)\). Applying Lemma 4 leads to (3.8). If \(\alpha \leq \min(1, c) \), then \(f_{\alpha,c} \) is strictly convex and we obtain the reverse of (3.8).

Next, we assume that (3.8) is valid for all \(x, y > 0 \). Setting \(x = y \) gives

\[
f_{\alpha,c}(2x) < 2f_{\alpha,c}(x).
\]

This leads to

\[
2^c \cdot x^c \frac{\Gamma(x)}{\Gamma(x + c)} \cdot (2x)^{-c} \frac{\Gamma(2x + c)}{\Gamma(2x)} < 2^\alpha
\]

and

\[
2 \cdot \frac{\Gamma(x + 1)}{\Gamma(2x + 1)} \cdot \frac{\Gamma(2x + c)}{\Gamma(x + c)} < 2^\alpha.
\]

We let \(x \) tend to \(\infty \) and apply (2.2). Then, (3.9) gives \(c \leq \alpha \). Next, we let \(x \) tend to 0. Then, (3.10) yields \(1 \leq \alpha \). Thus, \(\alpha \geq \max(1, c) \). If the reverse of (3.8) holds for all \(x, y > 0 \), then we get (3.9) and (3.10) with ‘\(> \)’ instead of ‘\(< \)’. This leads to \(c \geq \alpha \) and \(1 \geq \alpha \). Hence, \(\alpha \leq \min(1, c) \). The proof of Theorem 2 is complete. \(\square \)

Acknowledgment

The author thanks the referee for the careful reading of the manuscript.

References

MORSBACHER STR. 10, D-51545 WALDBRÖL, GERMANY

E-mail address: alzerhorst@freenet.de

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use