Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Spectral flow as winding number and integral formulas

Author: Charlotte Wahl
Journal: Proc. Amer. Math. Soc. 135 (2007), 4063-4073
MSC (2000): Primary 58J30; Secondary 47B10
Published electronically: September 12, 2007
MathSciNet review: 2341959
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A general integral formula for the spectral flow of a path of unbounded selfadjoint Fredholm operators subject to certain summability conditions is derived from the interpretation of the spectral flow as a winding number.

References [Enhancements On Off] (What's this?)

  • [APS] M.F. Atiyah, V.K. Patodi and I.M. Singer, ``Spectral asymmetry and Riemannian geometry III'', Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 1, pp. 71-99. MR 0397799 (53:1655c)
  • [ASS] S. Avron, R. Seiler and B. Simon, ``The index of a pair of projections'', J. Funct. Anal. 120 (1994), no. 1, pp. 220-237. MR 1262254 (95b:47012)
  • [BCPRSW] M.-T. Benameur, A.L. Carey, J. Phillips, A. Rennie, F.A. Sukochev and K.P. Wojciechowski, ``An analytic approach to spectral flow in von Neumann algebras'', Analysis, Geometry and Topology of Elliptic Operators. Papers in Honor of Krzysztof P. Wojciechowski, World Sci. Publ., Singapore, 2006, pp. 297-352. MR 2246773
  • [BLP] B. Booss-Bavnbek, M. Lesch and J. Phillips, ``Unbounded Fredholm operators and spectral flow'', Canad. J. Math. 57 (2005), no. 2, pp. 225-250. MR 2124916 (2006a:58029)
  • [CP1] A. Carey and J. Phillips, ``Unbounded Fredholm modules and spectral flow'', Canad. J. Math. 50 (1998), no. 4, pp. 673-718. MR 1638603 (2000g:58041)
  • [CP2] A. Carey and J. Phillips, ``Spectral flow in Fredholm modules, eta invariants and the JLO cocycle'', $ K$-Theory 31 (2004), no. 2, pp. 135-194. MR 2053481 (2005f:58043)
  • [Gl] E. Getzler, ``The odd Chern character in cyclic homology and spectral flow'', Topology 32 (1993), no. 3, pp. 489-507. MR 1231957 (95c:46118)
  • [GS] E. Getzler and A. Szenes, ``On the Chern character of a theta-summable Fredholm module'', J. Funct. Anal. 84 (1989), no. 2, pp. 343-357. MR 1001465 (91g:19007)
  • [KL] P. Kirk and M. Lesch, ``The $ \eta$-invariant, Maslov index, and spectral flow for Dirac-type operators on manifolds with boundary'', Forum Math. 16 (2004), no. 4, pp. 553-629. MR 2044028 (2005b:58029)
  • [L] M. Lesch, ``The uniqueness of the spectral flow on spaces of unbounded self-adjoint Fredholm operators'', Contemp. Math. 366 (2005), pp. 193-224. MR 2114489 (2005m:58049)
  • [Wa] C. Wahl, ``A new topology on the space of unbounded selfadjoint operators and the spectral flow'', preprint math.FA/0607783 on arXiv (2006).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 58J30, 47B10

Retrieve articles in all journals with MSC (2000): 58J30, 47B10

Additional Information

Charlotte Wahl
Affiliation: Mathematisches Inst., Georg-August-Universität Göttingen, Bunsenstr. 3-5, 37073 Göttingen, Germany

Keywords: Spectral flow, integral formula, winding number, Schatten ideal
Received by editor(s): July 5, 2006
Received by editor(s) in revised form: September 11, 2006
Published electronically: September 12, 2007
Communicated by: Mikhail Shubin
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society