Spectral flow as winding number and integral formulas

Author:
Charlotte Wahl

Journal:
Proc. Amer. Math. Soc. **135** (2007), 4063-4073

MSC (2000):
Primary 58J30; Secondary 47B10

DOI:
https://doi.org/10.1090/S0002-9939-07-08919-8

Published electronically:
September 12, 2007

MathSciNet review:
2341959

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A general integral formula for the spectral flow of a path of unbounded selfadjoint Fredholm operators subject to certain summability conditions is derived from the interpretation of the spectral flow as a winding number.

**[APS]**M.F. Atiyah, V.K. Patodi and I.M. Singer, ``Spectral asymmetry and Riemannian geometry III'',*Math. Proc. Cambridge Philos. Soc.*79 (1976), no. 1, pp. 71-99. MR**0397799 (53:1655c)****[ASS]**S. Avron, R. Seiler and B. Simon, ``The index of a pair of projections'',*J. Funct. Anal.*120 (1994), no. 1, pp. 220-237. MR**1262254 (95b:47012)****[BCPRSW]**M.-T. Benameur, A.L. Carey, J. Phillips, A. Rennie, F.A. Sukochev and K.P. Wojciechowski, ``An analytic approach to spectral flow in von Neumann algebras'',*Analysis, Geometry and Topology of Elliptic Operators. Papers in Honor of Krzysztof P. Wojciechowski*, World Sci. Publ., Singapore, 2006, pp. 297-352. MR**2246773****[BLP]**B. Booss-Bavnbek, M. Lesch and J. Phillips, ``Unbounded Fredholm operators and spectral flow'',*Canad. J. Math.*57 (2005), no. 2, pp. 225-250. MR**2124916 (2006a:58029)****[CP1]**A. Carey and J. Phillips, ``Unbounded Fredholm modules and spectral flow'',*Canad. J. Math.*50 (1998), no. 4, pp. 673-718. MR**1638603 (2000g:58041)****[CP2]**A. Carey and J. Phillips, ``Spectral flow in Fredholm modules, eta invariants and the JLO cocycle'',*-Theory*31 (2004), no. 2, pp. 135-194. MR**2053481 (2005f:58043)****[Gl]**E. Getzler, ``The odd Chern character in cyclic homology and spectral flow'',*Topology*32 (1993), no. 3, pp. 489-507. MR**1231957 (95c:46118)****[GS]**E. Getzler and A. Szenes, ``On the Chern character of a theta-summable Fredholm module'',*J. Funct. Anal.*84 (1989), no. 2, pp. 343-357. MR**1001465 (91g:19007)****[KL]**P. Kirk and M. Lesch, ``The -invariant, Maslov index, and spectral flow for Dirac-type operators on manifolds with boundary'',*Forum Math.*16 (2004), no. 4, pp. 553-629. MR**2044028 (2005b:58029)****[L]**M. Lesch, ``The uniqueness of the spectral flow on spaces of unbounded self-adjoint Fredholm operators'',*Contemp. Math.*366 (2005), pp. 193-224. MR**2114489 (2005m:58049)****[Wa]**C. Wahl, ``A new topology on the space of unbounded selfadjoint operators and the spectral flow'', preprint math.FA/0607783 on arXiv (2006).

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
58J30,
47B10

Retrieve articles in all journals with MSC (2000): 58J30, 47B10

Additional Information

**Charlotte Wahl**

Affiliation:
Mathematisches Inst., Georg-August-Universität Göttingen, Bunsenstr. 3-5, 37073 Göttingen, Germany

Email:
ac.wahl@web.de

DOI:
https://doi.org/10.1090/S0002-9939-07-08919-8

Keywords:
Spectral flow,
integral formula,
winding number,
Schatten ideal

Received by editor(s):
July 5, 2006

Received by editor(s) in revised form:
September 11, 2006

Published electronically:
September 12, 2007

Communicated by:
Mikhail Shubin

Article copyright:
© Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.