Abstract. We describe how closed geodesics lying in a prescribed homology class on a negatively curved manifold split when lifted to a finite cover. This generalizes a result of Zelditch in the case of compact hyperbolic surfaces.

0. Introduction

Given a compact manifold of negative curvature, there are geometric analogues of the Chebotarev Theorem in algebraic number theory due to Sunada [13] (cf. also Parry and Pollicott [8] for the generalization to Axiom A flows). More precisely, given a finite Galois cover of the manifold, these theorems describe the proportion of closed geodesics which lift in a prescribed way to the cover. In this geometric setting, it is also natural to consider infinite covers, and, in particular, the number of closed geodesics lying in a prescribed homology class has been studied by Katsuda and Sunada [4], Phillips and Sarnak [9], Katsuda [3], Lalley [7] and Pollicott [10] (with generalizations to Anosov flows by Katsuda and Sunada [5] and Sharp [12]). In this note we shall combine these points of view, generalizing a result of Zelditch for hyperbolic Riemann surfaces [14].

Let M be a compact smooth Riemannian manifold with negative curvature. Let \tilde{M} be a finite Galois covering of M with covering group G. For a closed geodesic γ on M, let $l(\gamma)$ denote its length, $\langle \gamma \rangle$ its Frobenius class in G and $[\gamma]$ its homology class in $H = H_1(M, \mathbb{Z})$.

We shall examine how the closed geodesics lying in a fixed homology class $\alpha \in H$, split when lifted to \tilde{M}. More precisely, for a conjugacy class C in G, we study the asymptotics of

$$\pi(T, \alpha, C) = \text{Card}\{\gamma : l(\gamma) \leq T, [\gamma] = \alpha, \langle \gamma \rangle = C\}.$$

The problem is complicated by the fact that, in general, $[\gamma]$ and $\langle \gamma \rangle$ are not independent quantities. This occurs if the abelian quotient group $G/[G, G]$ is non-trivial, since this group is also a quotient of H, the maximal abelian covering group of M. Let $\pi_G : G \to G/[G, G]$ and $\pi_H : H \to G/[G, G]$ be the natural projections. In particular, the image $\pi_G(C)$ of a conjugacy class $C \subset G$ is a single element in $G/[G, G]$ and if $\pi_G(C) \neq \pi_H(\alpha)$, then $\pi(T, \alpha, C) = 0$, for all values of T.

On the other hand, we have the following result, which extends work of Zelditch for Riemann surfaces [14].
There is a discrete group of isometries Γ where λM has negative curvature and let X be the unique unit-speed geodesic with $x > 0$. Then the fibres above each point in M are compactified Fuchsian groups. Define a homomorphism $\phi : \Gamma \to G$ by setting $\phi(a_1) = i$, $\phi(a_2) = j$ and $\phi(b_1) = \phi(b_2) = 1$ and extending this to Γ. We can then define a normal subgroup by $\Gamma_0 = \ker(\phi)$. If we set $M = \mathbb{H}^2/\Gamma_0$ and $\tilde{M} = \mathbb{H}^2/\Gamma_0$, then \tilde{M} is a finite cover of M with covering group G.

Let us consider a closely related problem. Consider the frame flow $f : FM \to FM$ on the space of orthonormal frames above M. This is an $SO(n - 1)$-extension for the geodesic flow. Changing notation slightly, let γ be a periodic orbit of the geodesic flow, to which we associate a holonomy $\Theta(\gamma) \in SO(n - 1)$ which comes from a reference frame being transported around γ. This is defined up to conjugacy. In [N] it was shown that the holonomies were equidistributed on $SO(n - 1)$. The following shows that the corresponding result holds for geodesics in a fixed homology class. (Recall that a class function is a function that is constant on conjugacy classes.)

Theorem 2. Let $F : SO(n - 1) \to \mathbb{R}$ be a class function. Then

$$\frac{1}{\pi(T, \alpha)} \sum_{l(\gamma) \leq T} F(\Theta(\gamma)) \to \int Fd\lambda, \quad as \ T \to +\infty,$$

where λ denotes the Haar measure on $SO(n - 1)$.

1. Preliminaries

Let M be a compact smooth manifold equipped with a Riemannian metric of negative curvature and let X denote its universal cover. (In the special case where M is a surface with constant curvature -1, X is the hyperbolic plane \mathbb{H}^2.) Then there is a discrete group of isometries $\Gamma \cong \pi_1(M)$ of X such that $M = X/\Gamma$. Now let Γ_0 be a normal subgroup of Γ with finite index. Then $\tilde{M} = X/\Gamma_0$ is a finite (Galois) covering of M, with covering group $G = \Gamma/\Gamma_0$ (i.e., G acts transitively on the fibres above each point in M).

There is a natural dynamical system, the geodesic flow, associated to M. Let SM denote the unit-tangent bundle of M and, for $(x, v) \in SM$, let $\gamma : \mathbb{R} \to M$ be the unique unit-speed geodesic with $\gamma(0) = x$ and $\dot{\gamma}(0) = v$. Then the geodesic flow $\phi : SM \to SM$ is defined by $\phi_t(x, v) = (\gamma(t), \dot{\gamma}(t))$, and we shall write h for its topological entropy. There is a one-to-one correspondence between periodic ϕ-orbits and directed closed geodesics on M. The fact that M is negatively curved ensures that the geodesic flow is an Anosov flow and that $h > 0$. This will enable us to use results proved in the context of Anosov flows in this setting.

We shall make use of L-functions defined with respect to certain representations of $\Gamma = \pi_1(M)$. Let $\rho : \Gamma \to U(d)$ be a unitary representation of Γ. We define an
The geodesic flow on \(L \), and hence the analytic properties of \(L \), lift to \(\tilde{M} \). There are a countable infinity of closed geodesics on \(M \); we shall denote a typical one by \(\gamma \) and its length by \(l(\gamma) \). Each such \(\gamma \) has \(n = |G| \) lifts \(\gamma_1, \ldots, \gamma_n \) to \(M \). These lifts are not necessarily closed but, for each \(i = 1, \ldots, n \), there is a covering transformation \(g_i \in G \) relating the endpoints of \(\gamma_i \), and, for \(i, j = 1, \ldots, n \), \(g_i \) and \(g_j \) are conjugate. Hence we may associate to \(\gamma \) a well-defined conjugacy class \(\langle \gamma \rangle \subset G \), called the Frobenius class of \(\gamma \). These classes satisfy an analogue to Chebotarev’s Theorem in number theory: for a conjugacy class \(C \subset G \),

\[
\lim_{T \to +\infty} \frac{\#\{\gamma : l(\gamma) \leq T, \langle \gamma \rangle = C\}}{\#\{\gamma : l(\gamma) \leq T\}} = \frac{|C|}{|G|},
\]

The identity (1.2) is proved by considering \(L \)-functions

\[
L(s, R_\chi) = \prod_\gamma \det(I - R_\chi(\langle \gamma \rangle))e^{-sl(\gamma)}^{-1},
\]

where \(R_\chi \) is an irreducible representation of \(G \) with character \(\chi \). Since \(R_\chi \) lifts to a representation of \(\Gamma \), \(L(s, R_\chi) \) is a special case of the \(L \)-functions defined by (1.1). The geodesic flow on \(SM \) is also covered by the geodesic flow on \(S\tilde{M} \), with covering group \(G \), and hence the analytic properties of \(L(s, R_\chi) \) may be deduced from the results in [3].

Lemma 1.1.

(i) Let \(1 \) denote the trivial one-dimensional representation of \(G \). Then \(L(s, 1) \) is analytic and nonzero on a neighbourhood of \(\{ s : \operatorname{Re}(s) \geq h \} \), apart from a simple pole at \(s = h \).

(ii) If \(R_\chi \neq 1 \) is an irreducible representation of \(G \), then \(L(s, 1) \) is analytic and nonzero on a neighbourhood of \(\{ s : \operatorname{Re}(s) \geq h \} \).

In this paper, we shall refine (1.2) by requiring that \(\gamma \) lies in a prescribed homology class in \(H = H_1(M, \mathbb{Z}) \). More precisely, for \(\alpha \in H \), we shall write \(\pi(T, \alpha) = \#\{\gamma : l(\gamma) \leq T, [\gamma] = \alpha\} \) and \(\pi(T, \alpha, C) = \#\{\gamma : l(\gamma) \leq T, [\gamma] = \alpha, \langle \gamma \rangle = C\} \) and study the ratio

\[
\pi(T, \alpha, C) \quad \pi(T, \alpha)
\]

where \([\gamma] \in H_1(M, \mathbb{Z})\) denotes the homology class of \(\gamma \). Theorem 1 states that either \(\pi(T, \alpha, C) \) is identically zero or (1.3) has a limit as \(T \to +\infty \). We shall prove this in the next section; however, to do so, we need to first recall how \(\pi(T, \alpha) \) behaves as \(T \to +\infty \).

The asymptotics of \(\pi(T, \alpha) \) are also obtained by considering a family of \(L \)-functions, in this case indexed by the characters of \(H \). We suppose that \(H \) is
infinite and, for simplicity, we consider H modulo torsion. Then these characters may be identified with the torus $T^d = \mathbb{R}^d/\mathbb{Z}^d$, $d \geq 1$. For $\theta \in T^d$, we write

$$L(s, \theta) = \prod_{\gamma} \left(1 - e^{-s\langle \gamma \rangle + 2\pi i \theta \cdot [\gamma]}\right)^{-1}.$$

Since characters of H lift to Γ, this is again an L-function of the form defined in (1.1).

We also write

$$\eta_\alpha(s) = \int_{T^d} e^{-2\pi i \theta \cdot \alpha} \frac{d^{\nu+1}}{ds^{\nu+1}} \left(\log L(s, \theta)\right) d\theta,$$

where $\nu = \lfloor d/2 \rfloor$. The following lemma is taken from [5] and [12].

Lemma 1.2. For each $\alpha \in H$, $\eta_\alpha(s)$ is analytic for $\text{Re}(s) > h$.

(i) If d is even, then, for some constant $c_0 > 0$,

$$\lim_{\sigma \to h^-} \left(\eta_\alpha(\sigma + i \tau) - \frac{(-1)^{\nu+1}c_0}{\sigma + i \tau - h}\right)$$

exists for almost every $\tau \in \mathbb{R}$ and is locally integrable. Moreover, there exists a locally integrable function $f(\tau)$ such that, for $\sigma > h$,

$$\left|\eta_\alpha(\sigma + i \tau) - \frac{(-1)^{\nu+1}c_0}{\sigma + i \tau - h}\right| \leq f(\tau).$$

(ii) If d is odd, then, for some constant $c_0 > 0$,

$$\lim_{\sigma \to h^-} \left(\eta_\alpha(\sigma + i \tau) - \frac{(-1)^{\nu+1}c_0\sqrt{\pi}}{\sqrt{\sigma + i \tau - h}}\right)$$

exists for almost every $\tau \in \mathbb{R}$ and is locally integrable with locally integrable first derivative. Moreover, there exists a locally integrable function $f(\tau)$ such that, for $\sigma > h$,

$$\left|\eta_\alpha(\sigma + i \tau) - \frac{(-1)^{\nu+1}c_0\sqrt{\pi}}{\sqrt{\sigma + i \tau - h}}\right| \leq f(\tau).$$

The constant c_0 in (i) and (ii) is independent of α.

When combined with appropriate Tauberian theorems, this lemma is enough to ensure that, for some constant $c > 0$, independent of $\alpha \in H$,

$$\lim_{T \to +\infty} T^{1+d/2} e^{-hT} \pi(T, \alpha) = c.$$ (1.4)

(See [5] or [12] for more details.)

2. Proof of Theorem 1

It is clear that, in general, (1.3) will depend on the relationship between G and H and, particularly, C and α. Write $A = G/[G, G]$, the abelianization of G. Clearly, A is a quotient of $\pi_1(M)$ and, since H is the maximal abelian quotient of $\pi_1(M)$, A is also a quotient of H. The extreme cases are:

(a) G is abelian. Then $G = A$ and G itself is a quotient of H.

(b) G is perfect. Then $G = [G, G]$ and A is trivial.
We shall write \(\pi_G : G \to A \) and \(\pi_H : H \to A \) to denote the respective projections. In particular, it is clear that if \(\pi_G(C) \neq \pi_H(\alpha) \), then \(\pi(T, \alpha, C) = 0 \) for all \(T > 0 \).

The proof of Theorem 1 depends on considering \(L \)-functions defined with respect to unitary representations of \(\Gamma \) of the form \(\theta \otimes R_\chi \), where \(\theta \in \mathbb{T}^d \) and \(R_\chi \) is an irreducible representation of \(G \) (or, more precisely, the lifts of these quantities to \(\Gamma \)). However, as we shall describe below, some of these \(\theta \otimes R_\chi \) are trivial. The corresponding \(L \)-functions take the form
\[
L(s, \theta \otimes R_\chi) = \prod_{\gamma} \det(I - R_\chi((\gamma)))e^{-snl(\gamma) + 2\pi in\theta[\gamma]},
\]
which converge to analytic functions for Re(\(s \)) > \(h \). Taking the logarithm and differentiating \(\nu + 1 \) times gives
\[
\left(\frac{d}{ds} \right)^{\nu+1} (\log L)(s, \theta \otimes R_\chi) = \sum_{\gamma} \sum_{n=1}^{\infty} n^{\nu-1} \chi(\langle \gamma \rangle) e^{-snl(\gamma) + 2\pi in\theta[\gamma]}.
\]
Applying the standard orthogonality relations for both for irreducible representations of \(G \) and for \(\mathbb{T}^d \) term-by-term in the above formula we obtain the relation
\[
\sum_{R_\chi_{\text{irred}}} \int_{\mathbb{T}^d} e^{-2\pi i \theta \cdot \alpha} \chi(C) \left(\frac{d}{ds} \right)^{\nu+1} (\log L)(s, \theta \otimes R_\chi) d\theta
\]
\[
= -\frac{|G|}{|C|} \sum_{\gamma} n^{\nu-1} \chi(\langle \gamma \rangle) e^{-snl(\gamma)},
\]
where the right-hand side vanishes if \(\pi_G(C) \neq \pi_H(\alpha) \).

The asymptotic behaviour of \(\pi(T, \alpha, C) \) may be deduced from properties of the right-hand side of (2.1): so, to prove Theorem 1, it is enough to study
\[
\sum_{R_\chi_{\text{irred}}} \int_{\mathbb{T}^d} e^{-2\pi i \theta \cdot \alpha} \chi(C) \left(\frac{d}{ds} \right)^{\nu+1} (\log L)(s, \theta \otimes R_\chi) d\theta
\]
and understand its meromorphic extension, via that of \(L(s, \theta \otimes R_\chi) \), and, in particular, the nature of the singularities on Re(\(s \)) = \(h \).

First we determine which \(\theta \otimes R_\chi \) are trivial. Let \(m = |G/[G,G]| \) be the cardinality of \(G/[G,G] \) and let \(1 = \chi_0, \ldots, \chi_{m-1} \) be the characters of \(G/[G,G] \) (i.e., the 1-dimensional representations of \(G/[G,G] \)). These lift to \(G \) via \(\pi_G \) but 1-dimensional characters on \(G \) also descend to \(G/[G,G] \), since any such character annihilates commutators. Thus we may identify 1-dimensional representations of \(G \) with characters of \(G/[G,G] \). Each \(\chi_i \) also lifts to a character of \(H \), which we can denote by \(\theta_i \).

Lemma 2.1. The representation \(\theta \otimes R_\chi \) is trivial precisely when it is of the form \(\theta_i^{-1} \otimes R_\chi \), \(i = 0, \ldots, m-1 \).

Proof. It is clear from their construction that these representations are trivial. On the other hand, if \(\theta \otimes R_\chi \) is trivial, then \(R_\chi \) is one dimensional and hence it corresponds to one of the characters \(\chi_0, \ldots, \chi_{m-1} \) of \(G/[G,G] \). It is easy to see that, for \(i = 0, \ldots, m-1 \), \(\theta \otimes \chi_i \) is trivial only if \(\theta = \theta_i^{-1} \). \(\square \)
An immediate consequence is the following.

Lemma 2.2. For $i = 0, \ldots, m - 1$, the function $\zeta(s) := L(s, \theta^{-1} R_{\chi_i})$ has a simple pole at $s = h$ and no other poles on $\text{Re}(s) = h$.

Next we can consider $L(s, \theta \otimes R_{\chi})$ for $\theta \otimes R_{\chi}$ nontrivial.

Lemma 2.3. If $L(s, \theta \otimes R_{\chi})$ has a pole on $\text{Re}(s) = h$, then R_{χ} is 1-dimensional and χ is a character of $G/[G, G]$, namely, one of the $\chi_1, \ldots, \chi_{m-1}$.

Proof. This follows from the discussion on page 146 of [8]. \qed

If R_{χ} is 1-dimensional, then, as above, we can lift $\theta \otimes R_{\chi}$ to $\theta + \theta_i \in T^2g$ and rewrite the L-function as

$$L(s, \theta \otimes R_{\chi}) = L(s, \theta + \theta_i) = \prod_{\gamma}(1 - e^{-s(\gamma) + 2\pi i(\theta + \theta_i)[\gamma]})^{-1}.$$

However, this is again an L-function for homology.

Lemma 2.4. If $\theta \otimes R_{\chi}$ is nontrivial, then $L(s, \theta \otimes R_{\chi})$ is analytic on $\text{Re}(s) = h$.

Proof. By the above, we only need to consider the case when $L(s, \theta \otimes R_{\chi}) = L(s, \theta + \theta_i)$. However, if $\theta \otimes R_{\chi}$ is nontrivial, then $\theta \neq -\theta_i$, so the lemma follows from standard results in [3], [5], [10], [12]. \qed

To proceed, we return to the expression (2.1). We can rewrite this as

$$\frac{|C|}{|G|} \sum_{i=0}^{m-1} \chi_i(C) \int_{T^2g} e^{-2\pi i \theta - \alpha} \left(d \frac{d}{ds} \right)^{g+1} (\log L)(s, \theta \otimes R_{\chi}) d\theta + \phi(s),$$

where $\phi(s)$ is a function analytic in a neighbourhood of $\text{Re}(s) = h$ and, from (2.2), $L(s, \theta \otimes R_{\chi}) = L(s, \theta + \theta_i)$. We also note that, since we are assuming that $\pi_G(C) = \pi_H(\alpha)$, we have that

$$\chi_i(C)e^{-2\pi i \theta - \alpha} = 1, \text{ for } i = 0, \ldots, m - 1.$$

Hence one sees that the function in (2.1) satisfies an analogue of Lemma 1.2 in which that c_0 is replaced by $c_0|m|G|/|C|$.

From this one deduces, as in [5] or [12], that

$$\lim_{T \to +\infty} T^{1+\epsilon/2} e^{-\frac{1}{d} \pi(T, \alpha, C) = cm |C|/|G|},$$

with c as in (1.4).

Finally, recalling that $m = |G/[G, G]|$, this is enough to prove Theorem 1.

Remarks. (i) If M is either a surface or has curvature that is 1/4-pinched, then, working along the lines of [1], [6], [11], one can get an $O(T^{-1})$ error term, as Zelditch obtained for a hyperbolic surface. It is also possible to prove analogous results where a fixed homology class is replaced by one which changes linearly in T (cf. [2], [7]).

(ii) There is a natural extension of Theorem 1 to Anosov flows which are homologically full in the sense of [12], i.e., ones for which every homology class is represented by a periodic orbit. \qed
3. Proof of Theorem 2

We can easily adapt the proof of Theorem 1 to prove Theorem 2. Since we are replacing a finite group G by a compact group $SO(n-1)$ we need to consider a countable family of representations R_{χ}, rather than a finite family. However, by approximation it suffices to consider each representation separately. As in the proof in the last section, one can consider representations $\theta \otimes R_{\chi}$. However, a significant advantage here is that the groups H and $SO(n-1)$ can be treated independently.

In the case of the trivial representation, we have that $F = \chi = 1$ and we see that

$$\left(\frac{d}{ds} \right)^{\nu+1} (\log L)(s, \theta \otimes 1)$$

has a singularity of the form

$$\text{Const.} \times \frac{1}{(s - s(\theta))}.$$

The analysis reduces to that in [5], [12], from which we get an asymptotic formula

$$\lim_{T \to +\infty} \frac{1}{\pi(T, \alpha)} \sum_{\substack{l(\gamma) \leq T \\
\gamma = \alpha}} F(\Theta(\gamma)) = 1.$$

However, in the case of nontrivial representations we have that the L-function $L(s, \theta \otimes 1)$ is always analytic on $\Re(s) = h$, from which one sees that

$$\sum_{\substack{l(\gamma) \leq T \\
\gamma = \alpha}} F(\Theta(\gamma)) = o\left(\pi(T, \alpha) \right).$$

References

12. R. Sharp, Closed orbits in homology classes for Anosov flows, Ergodic Theory Dynam. Systems 13 (1993), 387-408. MR1225480 (94g:58169)

Department of Mathematics, University of Warwick, Coventry, CV4 7AL, United Kingdom

E-mail address: mpollic@maths.warwick.ac.uk

School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

E-mail address: sharp@maths.man.ac.uk