Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The $ 3$-local $ \mathit{tmf}$-homology of $ B\Sigma_3$


Author: Michael A. Hill
Journal: Proc. Amer. Math. Soc. 135 (2007), 4075-4086
MSC (2000): Primary 55N34; Secondary 55T15
DOI: https://doi.org/10.1090/S0002-9939-07-08937-X
Published electronically: August 14, 2007
MathSciNet review: 2341960
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we introduce a Hopf algebra, developed by the author and André Henriques, which is usable in the computation of the $ \mathit{tmf}$-homology of a space. As an application, we compute the $ \mathit{tmf}$-homology of $ B\Sigma_3$ in a manner analogous to Mahowald and Milgram's computation of the $ \mathit{ko}$-homology $ \mathbb{R}P^{\infty}$.


References [Enhancements On Off] (What's this?)

  • 1. Greg Arone and Mark Mahowald, The Goodwillie tower of the identity functor and the unstable periodic homotopy of spheres, Invent. Math. 135 (1999), no. 3, 743-788. MR 1669268 (2000e:55012)
  • 2. Andrew Baker and Andrej Lazarev, On the Adams spectral sequence for $ R$-modules, http://hopf.math.purdue.edu/Baker-Lazarev/Rmod-ASS.pdf.
  • 3. Tilman Bauer, Computation of the homotopy of the spectrum $ tmf$, arXiv:math.AT/0311328.
  • 4. Mark Behrens, A modular description of the $ K(2)$-local sphere at the prime 3, Topology 45 (2006), no. 2, 343-402. MR 2193339 (2006i:55016)
  • 5. Armand Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115-207. MR 0051508 (14:490e)
  • 6. J. P. C. Greenlees and J. P. May, Generalized Tate cohomology, Mem. Amer. Math. Soc. 113 (1995), no. 543, viii+178. MR 1230773 (96e:55006)
  • 7. M. Mahowald and R. James Milgram, Operations which detect $ {S}q^4$ in connective $ K$-theory and their applications, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 108, 415-432. MR 0433453 (55:6429)
  • 8. Mark Mahowald, A new infinite family in $ {}\sb{2}\pi\sb {*}{}\sp s$, Topology 16 (1977), no. 3, 249-256. MR 0445498 (56:3838)
  • 9. -, The image of $ J$ in the $ EHP$ sequence, Ann. of Math. (2) 116 (1982), no. 1, 65-112. MR 662118 (83i:55019)
  • 10. Norihiko Minami, On the odd-primary Adams $ 2$-line elements, Topology Appl. 101 (2000), no. 3, 231-255. MR 1733806 (2000i:55038)
  • 11. Charles Rezk, Supplementary notes for math $ 512$, www.math.uiuc.edu/ rezk/papers.html.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 55N34, 55T15

Retrieve articles in all journals with MSC (2000): 55N34, 55T15


Additional Information

Michael A. Hill
Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Address at time of publication: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903
Email: mikehill@virginia.edu

DOI: https://doi.org/10.1090/S0002-9939-07-08937-X
Received by editor(s): July 17, 2006
Received by editor(s) in revised form: September 13, 2006
Published electronically: August 14, 2007
Communicated by: Paul Goerss
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society