HOMOGENEOUS POLYNOMIALS
ON STRICTLY CONVEX DOMAINS

PIOTR KOT

(Communicated by Mei-Chi Shaw)

Abstract. We consider a circular, bounded, strictly convex domain \(\Omega \subset \mathbb{C}^d \)
with boundary of class \(\mathcal{C}^2 \). For any compact subset \(K \) of \(\partial \Omega \) we construct a sequence of homogeneous polynomials on \(\Omega \) which are big at each point of \(K \).

As an application for any \(E \subset \partial \Omega \) circular subset of type \(G_\delta \) we construct a holomorphic function \(f \) which is square integrable on \(\Omega \setminus D \) and such that \(E = E_{D}^2(f) := \{ z \in \partial \Omega : \int_{D} |f|^2 \, d\mathcal{L}^2_{D} = \infty \} \) where \(D \) denotes unit disc in \(\mathbb{C} \).

1. Introduction

Let \(\Omega \) denote a bounded, convex and circular domain with a defining function \(\eta \) of class \(\mathcal{C}^2 \). We also denote by \(D \) the unit disc in \(\mathbb{C} \) and define the exceptional set \(E_{D}^2(f) := \{ z \in \partial \Omega : \int_{D} |f|^2 \, d\mathcal{L}^2_{D} = \infty \} \) for a holomorphic function \(f \in \mathcal{O}(\Omega) \). For more information about exceptional sets see [1, 2, 3, 4, 5, 6, 7].

In the paper [12] a natural number \(K \) and a sequence \(\{ p_n \}_{n=0}^\infty \) of homogeneous polynomials on \(\mathbb{C}^d \) were constructed so that \(|p_n(z)| \le 2 \) and \(\sum_{j=Km}^{K(m+1)-1} |p_n(z)| \ge 0.5 \) for all \(z \) belonging to the boundary of the unit ball \(\partial B^d \). In the paper [7] we introduced some additional arguments in such a way that for any circular set \(E \subset \partial B^d \) of type \(G_\delta \) and \(F_\sigma \) we could construct a holomorphic function \(f \) on the unit ball \(B^d \) so that \(E_{B^d}^2(f) = E \).

In this paper we construct similar homogeneous polynomials as in [7, 10, 11, 12]. Whilst these papers dealt with homogeneous polynomials on the unit ball, in this paper we construct homogeneous polynomials on \(\Omega \) which is a bounded, circular and strictly convex domain with boundary of class \(\mathcal{C}^2 \).

1.1. Geometric notions. In the complex \(d \)-dimensional space \(\mathbb{C}^d \) we consider the natural scalar product \(\langle \cdot, \cdot \rangle \). We also consider rotation invariant pseudometrics

\[\rho(z, w) = \min_{|\lambda|=1} \| z - \lambda w \| . \]

As usual, by \(B(\xi; r) \) we denote the open ball with center \(\xi \) and radius \(r \), i.e.

\[B(\xi; r) := \{ z \in \mathbb{C}^d : \rho(\xi, z) < r \} . \]
Let us recall that for \(\xi < q \) we may calculate:

\[
q_0 t^{d-1} \leq \mathcal{L}^d(B(\xi); r) \leq q_1 t^{d-1}
\]

for \(\xi \in \partial \Omega \) and \(0 \leq r \leq 2R := 2 \sup_{z,w \in \partial \Omega} \rho(z, w) \).

Since rotation does not change \(\mathcal{L}^d(B(\xi); r) \) we can assume that \(\xi = (a, 0) \) for some \(a \in \mathbb{R}_+ \). In particular we can calculate

\[
\rho(\lambda, (a, 0)) = \min_{|\eta|=1} \| \eta \lambda, \eta w \| - (a, 0) \| = \sqrt{(|\lambda| - a)^2 + \| w \|^2}.
\]

Assume for a moment that \(r \leq a \). Since \(\xi = (a, 0) \) we can observe that \(B(\xi; r) = B_+ (\xi; r) \cup B_- (\xi; r) \) where:

\[
B_+(\xi; r) := \{(a + s)e^{is}, w) \in \mathbb{C}^d : 0 < s < r, \phi \in [0, 2\pi], \| w \| < \sqrt{r^2 - s^2}\} \\
B_- (\xi; r) := \{(a - s)e^{is}, w) \in \mathbb{C}^d : 0 < s < r, \phi \in [0, 2\pi], \| w \| < \sqrt{r^2 - s^2}\}.
\]

We may calculate\(^1\)

\[
\mathcal{L}^d(B(\xi; r)) = \int_{B_+(\xi; r)} 1d\mathcal{L}^d + \int_{B_- (\xi; r)} 1d\mathcal{L}^d \\
= \int_0^r \int_0^{2\pi} \int_{\| w \| < \sqrt{r^2 - s^2}} (a + s) + (a - s)d\mathcal{L}^d - 2(w)d\phi \\
= 4\pi a \tau_{2d-2} \int_0^r (r^2 - s^2)^{d-1} ds \\
= 4\pi a \tau_{2d-2} \int_0^r r^{d-1} \sum_{k=0}^{d-1} \binom{d-1}{k} (-1)^k r^{2(d-k)} s^{2k} ds \\
= 4\pi a \tau_{2d-2} \int_0^r r^{d-1} \sum_{k=0}^{d-1} \binom{d-1}{k} (-1)^k (2k + 1)^{-d-1}.
\]

Since \(0 < r < 2R \) and \(0 \in \Omega \) the above equality implies that there exist constants \(0 < q_0 < q_1 \) such that \(\mathcal{L}^d(B(\xi; r)) = r^{d-1} \| \xi \| \sum_{k=0}^{d-1} \binom{d-1}{k} (-1)^k (2k + 1)^{-d-1} \) for \(\xi \in \partial \Omega \). However for us it suffices to use \(\Omega \).

Additionally let us assume that \(\mathcal{L}^d(B(0; 2R)) \leq q_1 q_0. \)

A subset \(A \subset \mathbb{C}^d \) is called \(\alpha \)-separated if \(\rho(z_1, z_2) > \alpha \) for all distinct elements \(z_1 \) and \(z_2 \) of \(A \). It is clear that for \(\alpha > 0 \) each \(\alpha \)-separated subset of \(\partial \Omega \) is finite.

If \(g : \mathbb{C}^d \to \mathbb{C} \) is a function of class \(C^2 \), then we denote \(g_\xi = \left(\frac{\partial g}{\partial z_1} (\xi), ..., \frac{\partial g}{\partial z_d} (\xi) \right) \)

and

\[
H_g(P, w) := \frac{1}{2} \sum_{j,k=1}^d \frac{\partial^2 g}{\partial z_j \partial z_k} (P) w_j w_k + \frac{1}{2} \sum_{j,k=1}^d \frac{\partial^2 g}{\partial z_j \partial \overline{z_k}} (P) \overline{w}_j w_k + \sum_{j,k=1}^d \frac{\partial^2 g}{\partial z_j \partial \overline{z_k}} (P) w_j \overline{w}_k.
\]

Let us recall that \(\eta \) is a defining function of class \(C^2 \) for \(\Omega \). Let \(X \) be a compact, circular set. Assume that \(X \) contains only strictly convex points of \(\partial \Omega \), i.e. if \(\xi \in X \), then \(H_\eta (\xi, w) > 0 \) when \(w \neq 0 \) and \(\Re ((w, \overline{\eta})) = 0. \)

\(^1\pi_m := \mathcal{L}^m(\{w \in \mathbb{C}^m : \| w \| < 1\})\).
2. Homogeneous polynomials

All homogeneous polynomials of degree \(n \) constructed in this paper have the following form:

\[
p_n(z) = \sum_{\xi \in A} \langle z, \nu_\xi \rangle^n
\]

where \(A \) is a finite subset of \(\partial \Omega \) and \(\nu_\xi = \frac{1}{\langle \xi, \nu_\xi \rangle} \).

We begin with a very important estimation of \(|\langle z, \nu_\xi \rangle| \).

Lemma 2.1. There exist constants \(c_1, c_2 > 0 \) such that

\[
c_1 \rho^2(z, \xi) \leq 1 - |\langle z, \nu_\xi \rangle| \leq c_2 \rho^2(z, \xi)
\]

for \(\xi \in X, z \in \partial \Omega \).

Proof. Since \(\Omega \) is a circular and convex domain

\[
|\langle z, \nu_\xi \rangle| - |\langle \xi, \nu_\xi \rangle| \leq |\langle z, \nu_\xi \rangle| - \Re \langle \xi, \nu_\xi \rangle \leq \max_{|\lambda| = 1} \Re \langle \lambda z - \xi, \nu_\xi \rangle \leq 0.
\]

First we prove that for \(\xi \in \partial \Omega \) we have the following property:

\[
\langle \xi, \nu_\xi \rangle \in \mathbb{R}_+.
\]

Let \(\lambda_0 \) be such that \(\langle \xi, \lambda_0 \nu_\xi \rangle \in \mathbb{R}_+ \) and \(|\lambda_0| = 1 \). Observe that

\[
\Re \langle z - \xi, \lambda_0 \nu_\xi \rangle \leq |\langle z, \nu_\xi \rangle| - |\langle \xi, \nu_\xi \rangle| \leq 0
\]

for \(z \in \partial \Omega \). Since \(\partial \Omega \) is of class \(C^2 \) we have \(\nu_\xi = \lambda_0 \nu_\xi \). In particular \(\lambda_0 = 1 \).

In the next step we prove that there exist constants \(c_3, c_4 > 0 \) such that for \(z \in \partial \Omega \) and \(\xi \in X \) we have:

\[
c_3 \|z - \xi\|^2 \leq |\Re \langle z - \xi, \nu_\xi \rangle| \leq c_4 \|z - \xi\|^2.
\]

Due to [9] Lemma 3.1.6 there exist a defining function \(\tilde{\eta} \) of class \(C^2 \) for \(\Omega \) and constants \(c_5, c_6 > 0 \) such that \(c_5 \|w\|^2 \leq H\tilde{\eta}(\xi, w) \leq c_6 \|w\|^2 \) for \(\xi \in X \) and \(w \in \mathbb{C}^d \).

Let

\[
\phi(\xi, h) := \langle h, \tilde{\eta}_\xi \rangle + \Re \langle h, \nu_\xi \rangle - \Re \langle h, \eta_\xi \rangle.
\]

Since \(\tilde{\eta} \) is of class \(C^2 \) we have \(\tilde{\eta}(\xi + h) = \tilde{\eta}(\xi) + \langle h, \tilde{\eta}_\xi \rangle + \Re \langle h, \nu_\xi \rangle + H\tilde{\eta}(\xi, h) + f(\xi, h) \|h\|^2 \) where \(f \) is a continuous function such that \(\lim_{h \to 0} f(\xi, h) = 0 \). Observe that

\[
2\Re \langle z - \xi, \tilde{\eta}_\xi \rangle = \Re \phi(\xi, z - \xi) \quad \text{for} \quad z \in \partial \Omega \quad \text{and} \quad \xi \in X.
\]

In particular we may estimate

\[
\frac{2\Re \langle z - \xi, \tilde{\eta}_\xi \rangle}{\|z - \xi\|^2} = \frac{-H\tilde{\eta}(\xi, z - \xi) - f(\xi, z - \xi) \|z - \xi\|^2}{\|z - \xi\|^2} \leq -c_5 - f(\xi, z - \xi)
\]

and

\[
\frac{2\Re \langle z - \xi, \tilde{\eta}_\xi \rangle}{\|z - \xi\|^2} \geq -c_6 - f(\xi, z - \xi).
\]

The above inequalities imply that there exist constants \(c_7, c_8 > 0 \) such that

\[
c_7 \|z - \xi\|^2 \leq |\Re \langle z - \xi, \tilde{\eta}_\xi \rangle| \leq c_8 \|z - \xi\|^2.
\]
Since \(\eta, \tilde{\eta} \) are defining functions for \(\Omega \) there exists a continuous, positive function \(g \) such that
\[
\left(\frac{\partial \eta}{\partial x_1}, \frac{\partial \eta}{\partial y_1}, \ldots, \frac{\partial \eta}{\partial x_d}, \frac{\partial \eta}{\partial y_d} \right) = g(\xi) \left(\frac{\partial \tilde{\eta}}{\partial x_1}, \frac{\partial \tilde{\eta}}{\partial y_1}, \ldots, \frac{\partial \tilde{\eta}}{\partial x_d}, \frac{\partial \tilde{\eta}}{\partial y_d} \right).
\]
In particular \(\Re \langle z - \xi, \eta \rangle = g(\xi) \Re \langle z - \xi, \eta \rangle \) and there exist constants \(c_3, c_4 > 0 \) such that (5) holds.

Now we prove the main conclusion. Let constants \(c_3, c_4 > 0 \) be such that (5) holds. Let \(\lambda_1, \lambda_2 \) be such that \(\min_{|\lambda|=1} |\Re \langle \lambda z - \xi, \eta \rangle| = |\Re \langle \lambda_1 z - \xi, \eta \rangle| \) and \(\rho(z, \xi) = \min_{|\lambda|=1} |\lambda z - \xi| = |\lambda_2 z - \xi| \). By (5) we may estimate
\[
c_3 \|\lambda_2 z - \xi\|^2 \leq c_3 \|\lambda_1 z - \xi\|^2 \leq |\Re \langle \lambda_1 z - \xi, \eta \rangle| \leq |\Re \langle \lambda_2 z - \xi, \eta \rangle| \leq c_4 \|\lambda_2 z - \xi\|^2.
\]
By (4) we have \(|\Re \langle \lambda_1 z - \xi, \eta \rangle| = |\langle \xi, \eta \rangle| - |\langle z, \eta \rangle| \). In particular we may estimate
\[
c_3 \frac{\langle \xi, \eta \rangle}{|\langle \xi, \eta \rangle|} \rho^2(z, \xi) \leq 1 - |\langle z, \eta \rangle| \leq \frac{c_4}{|\langle \xi, \eta \rangle|} \rho^2(z, \xi).
\]
Since \(X \) is a compact set and \(|\langle \xi, \eta \rangle| > 0 \) it is enough to define \(c_1 = \inf_{\xi \in X} \frac{c_3}{|\langle \xi, \eta \rangle|} \) and \(c_2 = \sup_{\eta \in X} \frac{c_4}{|\langle \xi, \eta \rangle|} \). □

In order to control the values of the constructed polynomials we need some information about \(\alpha \)-separated sets.

Lemma 2.2. Suppose that \(A = \{\xi_1, \ldots, \xi_s\} \) is a \(2\alpha t \)-separated subset of \(\partial \Omega \). For \(z \in \partial \Omega \) let
\[
A_k(z) := \{ \xi \in A : \alpha k t \leq \rho(z, \xi) \leq \alpha (k + 1)t \}.
\]
Then the set \(A_k(z) \) has at most \(q(k + 2)^{2d-1} \) elements. The set \(A_0 \) has at most 1 element and \(s \leq q_1(\alpha t)^{1-2d} \).

Proof. Observe that \(B(\xi_1; \alpha t) \cap B(\xi_2; \alpha t) = \emptyset \) for \(\xi_1 \neq \xi_2 \in A \). Moreover
\[
\bigcup_{\xi \in A_k(z)} B(\xi; \alpha t) \subset B(z; \alpha (k + 2)t).
\]
Let \(d_k \) be a number of elements in \(A_k(z) \). In particular
\[
d_k q_0(\alpha t)^{2d-1} \leq \sum_{\xi \in A_k(z)} \mathcal{L}^d(B(\xi; \alpha t)) \leq \mathcal{L}^d(B(z; \alpha (k + 2)t)) \leq q_1 q_0(\alpha (k + 2)t)^{2d-1}.
\]
We conclude that \(d_k \leq q_1 (k + 2)^{2d-1} \). Moreover if \(\xi_k \in A_0(z) \), then \(\rho(\xi_j, \xi_k) \leq \rho(z, \xi_j) + \rho(z, \xi_k) < 2\alpha t \) so \(\xi_j = \xi_k \) and \(d_0 \leq 1 \).

Since \(\Omega \subset B(0, R) \) (see section 1.1) we may assume that \(\alpha t \leq R \). In particular
\[
\bigcup_{\xi \in A_k(z)} B(\xi; \alpha t) \subset B(0; 2R)
\]
and we may estimate (see section 1.1)
\[
s q_0(\alpha t)^{2d-1} \leq \sum_{\xi \in A} \mathcal{L}^d(B(\xi; \alpha t)) \leq \mathcal{L}^d(B(0; 2R)) \leq q_1 q_0. \quad \square
\]

Lemma 2.3. If \(A \subset \partial \Omega \) is \(\alpha \)-separated, then for each \(\beta > \alpha \) there exists an integer \(K = K(\alpha, \beta) \) such that \(A \) can be partitioned into \(K \) disjoint \(\beta t \)-separated sets.
Lemma 2.5. \textbf{Proof.} Let us select from A a maximal βt-separated subset A_1. Next from $A \setminus A_1$ we select a maximal βt-separated subset A_2. We continue this way until we exhaust A. Let A_x be the last non-empty set in this procedure. Let $\xi \in A_x$. Observe that $B(\xi; \beta t) \cap A_k \neq \emptyset$ for $k = 1, \ldots, s - 1$. In particular $B(\xi; \beta t)$ contains at least s different elements $\{\xi_1, \ldots, \xi_s\}$ from A. Since $B(\xi_j; \alpha t) \cap B(\xi_k; \alpha t) = \emptyset$ for $j \neq k$ and $B(\xi_j; \alpha t) \subset B(\xi; (\beta + \alpha)t)$, then

\begin{equation*}
 s q_0(\alpha t)^{2d-1} \leq \sum_{j=1}^{s} N^{2d} (B(\xi_j; \alpha t)) \leq N^{2d} (B(\xi; (\beta + \alpha)t)) \leq q_0((\beta + \alpha)t)^{2d-1}.
\end{equation*}

We can conclude that $s \leq q_1 \left(\frac{\alpha}{\alpha + 1} \right)^{2d-1}$. Now it suffices to choose a natural number K so that $q_1 \left(\frac{\alpha}{\alpha + 1} \right)^{2d-1} \leq K$. \hfill \qed

Proposition 2.4. We have the following inequalities for $0 < x < 1$:

\begin{equation}
(1 - x)^{\frac{1}{2}} < e^{-1} < (1 - x)^{\frac{1}{2}}. \tag{6}
\end{equation}

\textbf{Proof.} Let $x \in (0, 1)$. To prove the left inequality let $f(x) := x + \ln (1 - x)$. Since $f'(x) = \frac{1}{1-x} < 0$ we have $f(x) < f(0) = 0$ and $\frac{1}{2} \ln (1 - x) < -1$.

To prove right inequality let $g(x) = \frac{1}{1-x} - \ln (1 - x)$. Since $g'(x) = \frac{1}{(1-x)^2} < 0$, then $g(x) < g(0) = 0$ and $-1 < \frac{1}{2} \ln (1 - x)$. \hfill \qed

Now we are ready to state some estimations for polynomials of the form (2).

Lemma 2.5. Let $0 < c_1 < c_2$ be constants from Lemma 2.1. For a given $a \in (0, 0.5)$ there exist constants $C > 2$ and $N_0 \in \mathbb{N}$ such that for all integers $N \geq N_0$, for each $C/\sqrt{c_1}N$-separated subset A of X and each integer m with $N \leq m \leq 2N$ the polynomial $p_m(z) := \sum_{\xi \in A} \langle z, \nu_\xi \rangle^m$ satisfies

1. If $z \in \partial \Omega$, $Q(z) := \left\{ \xi \in A : \rho(z, \xi) \geq \frac{C}{2\sqrt{c_1}N} \right\}$, then $\sum_{\xi \in Q(z)} |\langle z, \nu_\xi \rangle|^m < a$.
2. If $z \in \partial \Omega$, then $Q(z) \setminus A$ has at most one element.
3. If $\xi_0 \in A$, $z \in \partial \Omega$ are such that $\rho(z, \xi_0) \leq \frac{a}{\sqrt{c_2}N}$, then
 a. $Q(z) = A \setminus \{\xi_0\}$,
 b. $|\langle z, \nu_{\xi_0} \rangle|^m > 1 - 2a^2$,
 c. $|p_m(z)| > 1 - 2a^2 - a$.
4. $|p_m(z)| \leq \sum_{\xi \in A} |\langle z, \nu_\xi \rangle|^m < 1 + a$ for all $z \in \partial \Omega$.

\textbf{Proof.} There exists a constant $C > 2$ large enough that for $k \in \mathbb{N}_+$ we have

\begin{equation}
\sum_{k=1}^{\infty} q_1(k + 2)^{2d-1} \exp \left(\frac{k^2 c_2}{4} \right) < a. \tag{7}
\end{equation}

Due to Proposition 2.4 we can estimate:

\[\lim_{N \to \infty} \exp \left(\frac{-2a^2}{1 - a^2 N^{-1}} \right) = \exp (-2a^2) > 1 - 2a^2. \]

In particular we can choose $N_0 \in \mathbb{N}$ such that for $N \geq N_0$ we have

\begin{equation}
\exp \left(\frac{-2a^2}{1 - a^2 N^{-1}} \right) > 1 - 2a^2. \tag{8}
\end{equation}
There exists Theorem 2.6.

Let \(z \in \partial \Omega \), \(Q(z) := \{ \xi \in A : \rho(z, \xi) \geq \frac{C}{2\sqrt{c_1 N}} \} \) and
\[
A_k(z) = \{ \xi \in A : \frac{kC}{2\sqrt{c_1 N}} \leq \rho(z, \xi) < \frac{(k + 1)C}{2\sqrt{c_1 N}} \}.
\]

Due to Lemma 2.2 the set \(A_0(z) \) has at most 1 element and
\[
\#A_k(z) \leq q_1(k + 2)^{2d-1}.
\]

Since \(Q(z) \setminus A = A_0(z) \) we have the property (2). Due to Lemma 2.1 for \(\xi \in A_k(z) \) we have
\[
|\langle z, \nu_\xi \rangle| \leq 1 - c_1 \rho^2(z, \xi) \leq 1 - \frac{k^2C^2}{4N}.
\]

Now we may obtain the property (1):
\[
\sum_{\xi \in Q(z)} |\langle z, \nu_\xi \rangle|^m \leq \sum_{k=1}^{\infty} \sum_{\xi \in A_k(z)} |\langle z, \nu_\xi \rangle|^m \leq \sum_{k=1}^{\infty} \sum_{\xi \in A_k(z)} \left(1 - \frac{k^2C^2}{4N} \right)^N
\]
\[
\leq \sum_{k=1}^{\infty} \#A_k(z) \exp \left(-\frac{k^2C^2}{4} \right) \leq \sum_{k=1}^{\infty} q_1(k + 2)^{2d-1} \exp \left(\frac{C^2}{24N} \right) < a.
\]

Since \(A_0(z) \) has at most one element we obtain the property (4):
\[
|p_m(z)| \leq \sum_{\xi \in A} |\langle z, \nu_\xi \rangle|^m \leq 1 + \sum_{\xi \in Q(z)} |\langle z, \nu_\xi \rangle|^m < 1 + a.
\]

Now let \(\xi_0 \in A, z \in \partial \Omega \) be such that \(\rho(z, \xi_0) \leq \frac{a}{\sqrt{c_2 N}} < \frac{C}{2\sqrt{c_1 N}} \). Since \(A_0(z) \) has at most 1 element we have \(A_0(z) = \{ \xi_0 \} \), which gives the property (3a). Moreover we have:
\[
|\langle z, \nu_{\xi_0} \rangle| \geq 1 - c_2 \rho^2(z, \xi_0) \geq 1 - \frac{a^2}{N}.
\]

Now we observe the property (3b) for \(N \geq N_0 \):
\[
|\langle z, \nu_{\xi_0} \rangle|^m \geq \left(1 - \frac{a^2}{N} \right)^{2N} \geq \exp \left(\frac{-a^2N^{-1}2N}{1 - a^2N^{-1}} \right) > 1 - 2a^2.
\]

Moreover we may conclude the property (3c):
\[
|p_m(z)| \geq |\langle z, \nu_{\xi_0} \rangle|^m - \sum_{\xi \in Q(z)} |\langle z, \nu_\xi \rangle|^m > 1 - 2a^2 - a,
\]
which finishes the proof.

We are ready for main result of this paper.

Theorem 2.6. There exists \(K \in \mathbb{N} \) such that for \(0 < \epsilon < 1 \) and for each pair of compact, circular and disjoint sets \(D, T \) such that \(T \subset X, D \subset \partial \Omega \), we can choose \(m_0 = m_0(D, T, \epsilon) \in \mathbb{N} \) and a sequence \(p_m \) of homogeneous polynomials of degree \(m \) which satisfy

1. \(|p_m(z)| \leq 2 \) for all \(z \in \partial \Omega, m > m_0 \),
2. \(\sum_{k=K_m}^{K(m+1)-1} |p_k(z)|^2 \geq 0.25 \) for all \(z \in T, m > m_0 \),
3. \(\sum_{k=K_m}^{K(m+1)-1} |p_k(z)|^2 \leq 2^{-((Km)^{1-\epsilon}} \) for all \(z \in D, m > m_0 \).
Proof. Let $0 < c_1 < c_2$ be from Lemma 2.1. For $a = \frac{1}{4}$ we can choose C from Lemma 2.5. Let $K = K(\alpha, \beta)$ be from Lemma 2.3 for $\alpha = \frac{1}{4} \sqrt{c_2}$ and $\beta = \frac{C}{\sqrt{c_2}}$. For $N = Km$ fix a maximal $1/(4\sqrt{c_2N})$-separated subset $A \subset T$. Using Lemma 2.3 we can divide A into at most K disjoint $C/\sqrt{c_1N}$-separated subsets $A_0, A_1, \ldots, A_{K-1}$. We define

$$p_{Km+j}(z) := \sum_{\xi \in A_j} \langle z, \nu_\xi \rangle^{Km+j}$$

for $j = 0, 1, \ldots, K - 1$. From Lemma 2.5 we infer that there exists m_0 so high that for $m > m_0$ we have $|p_{Km+j}(z)| < 1 + a = \frac{5}{4} < 2$ for all $z \in \partial \Omega$ and $|p_{Km+j}(z)| > 1 - 2a^2 - a = \frac{1}{4} > 0.5$ for

$$z \in \bigcup_{\xi \in A_j} B\left(\xi; \frac{1}{4\sqrt{c_2N}}\right).$$

Since $A = \bigcup_{j=0}^{K-1} A_j$ is a maximal $1/(4\sqrt{c_2N})$-separated subset of T we conclude that

$$\bigcup_{j=0}^{K-1} \bigcup_{\xi \in A_j} B\left(\xi; \frac{1}{4\sqrt{c_2N}}\right) = \bigcup_{\xi \in A} B\left(\xi; \frac{1}{4\sqrt{c_2N}}\right) \supset T,$$

and from this follows that

$$\sum_{j=Km}^{K(m+1)-1} |p_j(z)|^2 \geq 0.25 \text{ for all } z \in T, m > m_0.$$

Without loss of generality we can assume that m_0 is so large that $\rho(z, w) > \sqrt{1/c_1N^\varepsilon}$ for all $z \in D$ and $w \in T$. Due to Lemma 2.2 we have

$$\# A_j \leq q_1 \left(\frac{\sqrt{c_1N}}{C}\right)^{2d-1}.$$

If $\xi \in A$ and $z \in D$, then on the basis of Lemma 2.1 we have

$$|\langle z, \nu_\xi \rangle| \leq 1 - c_1 \rho^2(z, \xi) \leq 1 - \frac{1}{N^\varepsilon}.$$

Now for m_0 large enough, $m > m_0$, $N = Km$ and $z \in D$ we may estimate

$$\sum_{j=0}^{K-1} |p_{Km+j}(z)|^2 \leq \sum_{j=0}^{K-1} \sum_{\xi \in A_j} |\langle z, \nu_\xi \rangle|^{2Km+j} \leq \sum_{\xi \in A} |\langle z, \nu_\xi \rangle|^N \leq \sum_{\xi \in A} \left(1 - \frac{1}{N^\varepsilon}\right)^N \leq q_1 K \left(\frac{\sqrt{c_1N}}{C}\right)^{2d-1} \left(1 - \frac{1}{N^\varepsilon}\right)^{N^\varepsilon N^{1-\varepsilon}} \leq \frac{1}{2^{N^{1-\varepsilon}}}. \tag*{\square}$$

As an application we can present the following result:

Theorem 2.7. Assume that Ω is a circular, bounded and strictly convex domain with the boundary of class C^2. Then for any circular subset $E \subset \partial \Omega$ of type G_6 there exists a holomorphic function f which is square integrable on $\Omega \setminus \mathbb{D}E$ and such that $E = E_0(f) := \{z \in \partial \Omega : \int_{\mathbb{D}z} |f|^2 d\mathcal{O}_{\mathbb{D}z} = \infty\}$.

Proof. Let σ be the natural measure on ∂Ω. On the basis of [8, Theorem 2.6] there exist sequences \(\{D_i\}_{i \in \mathbb{N}}\), \(\{T_i\}_{i \in \mathbb{N}}\) of compact, circular sets in ∂Ω such that:

1. \(\bigcup_{i \in \mathbb{N}} D_i = \partial \Omega \setminus E\) and \(D_j \subset D_{j+1}\) for \(j \in \mathbb{N}\),
2. \(T_j \cap D_j = \emptyset\) for \(j \in \mathbb{N}\),
3. \(E = \bigcap_{j=1}^{\infty} \bigcup_{i=j}^{\infty} T_i\),
4. \(\sigma(\partial \Omega \setminus (E \cup D_j)) \leq 2^{-j}\).

Since \(\Omega\) is a strictly convex domain then \(X = \partial \Omega\). Let \(K\) be a natural number from Theorem 2.6. We can use Theorem 2.6 once again and conclude that there exist a sequence of natural numbers \(\{m_j\}_{j \in \mathbb{N}}\) and a sequence of homogeneous polynomials \(\{p_m\}_{m \in \mathbb{N}}\) such that

1. \(m_j < m_{j+1}\) for \(j \in \mathbb{N}\),
2. \(|p_m(z)| \leq 2\) for all \(z \in \partial \Omega\), \(m > m_0\),
3. \(\sum_{k=Km_j}^{K(m_j+1)-1} |p_k(z)|^2 \geq 0.25\) for all \(z \in T_j\),
4. \(\sum_{k=Km_j}^{K(m_j+1)-1} |p_k(z)|^2 \leq 2^{-j}\) for all \(z \in D_j\).

Now we can define

\[
f = \frac{1}{\sqrt{n}} \sum_{j=1}^{\infty} \sum_{k=Km_j}^{K(m_j+1)-1} \sqrt{k+1} p_k.
\]

Observe that for \(z \in \partial \Omega\) we have

\[
\int_{\mathbb{D}} |f|^2 d\Omega^2_{\mathbb{D}} = \sum_{j=1}^{\infty} \sum_{k=Km_j}^{K(m_j+1)-1} |p_k(z)|^2.
\]

In particular for \(z \in E\) we have

\[
\int_{\mathbb{D}} |f|^2 d\Omega^2_{\mathbb{D}} \geq \sum_{j \in T_j} 0.25 = \infty.
\]

If \(z \in \partial \Omega \setminus E\), then there exists \(j_0\) such that \(z \in D_j\) for \(j \geq j_0\). In particular

\[
\int_{\mathbb{D}} |f|^2 d\Omega^2_{\mathbb{D}} \leq \sum_{j=1}^{j_0-1} \sum_{k=Km_j}^{K(m_j+1)-1} |p_k(z)|^2 + \sum_{j=j_0}^{\infty} 2^{-j} < \infty.
\]

Now we prove that \(f\) is square integrable on \(\Omega \setminus \mathbb{D}\). There exists \(M > 0\) such that

\[
\int_{\Omega \setminus \mathbb{D}} |f|^2 \, d\Omega^{2d} \leq M \int_{\partial \Omega \setminus E} \int_{\mathbb{D}} |f|^2 \, d\Omega^2_{\mathbb{D}} \, d\sigma(z).
\]

In particular we may estimate

\[
\int_{\Omega \setminus \mathbb{D}} |f|^2 \, d\Omega^{2d} \leq M \sum_{j=1}^{\infty} \int_{\partial \Omega \setminus E} \sum_{k=Km_j}^{K(m_j+1)-1} |p_k|^2 \, d\sigma
\]

\[
\leq M \sum_{j=1}^{\infty} 2^{-j} \sigma(D_j) + M \sum_{j=1}^{\infty} 4K \sigma(\partial \Omega \setminus (E \cup D_j))
\]

\[
\leq M \sigma(\partial \Omega) + 4KM < \infty.
\]

References

Politechnika Krakowska, Instytut Matematyki, ul. Warszawska 24, 31-155 Kraków, Poland

E-mail address: pkot@usk.pk.edu.pl