EXAMPLES OF FANO VARIETIES OF INDEX ONE THAT ARE NOT BIRATIONAL RIGID

ANA-MARIA CASTRAVET

(Communicated by Ted Chinburg)

Abstract. A conjecture of Pukhlikov states that a smooth Fano variety of dimension at least 4 and index one is birationally rigid. We show that a general member of the linear system given by the ample generator of the Picard group of the moduli space of stable, rank 2 bundles with fixed determinant of odd degree on a curve of genus at least 3 is not birationally rigid.

1. PUKHLIKOV’S CONJECTURE

The following is a conjecture of Pukhlikov:

Conjecture 1.1 ([P4, Conjecture 5.1]). Let \(V \) be a smooth Fano variety of dimension \(\dim V \geq 4 \) with Picard group \(\text{Pic}(V) \) generated by the canonical class \(K_V \). Then \(V \) is birationally rigid. If \(\dim V \geq 5 \), then \(V \) is superrigid.

Conjecture 1.1 was proved for a large class of Fano complete intersections [P1], [P3], [P4], [dF], [dFEM]. More examples are given by complete intersections in weighted projective spaces [P2]. Conjecture 1.1 is a generalization of the famous theorem of Iskovskikh and Manin [IM] that states that a smooth quartic threefold is birationally rigid, and therefore not rational.

In this note we give counterexamples (in arbitrarily large dimension) to Conjecture 1.1 using moduli spaces of bundles on curves. I am grateful to Professor János Kollár for telling me about this question and suggesting that I look at sections of the theta divisor on moduli spaces of bundles on curves. I thank Jenia Tevelev and Sean Keel for reading this note and for helpful suggestions.

We recall the basic definitions about birational rigidity from [P4]. Let \(V \) be a uniruled \(\mathbb{Q} \)-Gorenstein variety with terminal singularities. For an effective divisor \(D \neq 0 \) on \(V \), one defines the canonical threshold of canonical adjunction \(c(D) \) of the divisor \(D \) as follows:

\[
c(D) = \sup \{ \frac{b}{a} \mid b, a \in \mathbb{Z}_+ \setminus \{0\}, \ |aD + bK_X| \neq \emptyset \}.
\]

(If there are no \(a, b \in \mathbb{Z}_+ \setminus \{0\} \) such that \(|aD + bK_X| \neq \emptyset \), then we set \(c(D) = 0 \).)

Note, for an effective divisor \(D \neq 0 \) on a Fano variety \(V \) with \(\text{Pic}(V) = \mathbb{Z}K_V \), the canonical threshold \(c(D) \) is the number \(-m\), if \(D = mK_V \) in \(\text{Pic}(V) \). Clearly, in this case \(c(D) > 0 \).
In what follows all varieties are assumed to be \mathbb{Q}-factorial with terminal singularities. For simplicity, we work over an algebraically closed field of characteristic zero.

Definition 1.2 ([P4] Def. 5.1). A variety V is called *birationally rigid*, if for any V', any birational map $\phi: V \to V'$ and any moving linear system Σ' on V', there exists a birational self-map $\alpha: V \to V$ such that if Σ is the birational transform of Σ' via the composition $\phi \circ \alpha$ (i.e., the linear system induced on V when composing with $\phi \circ \alpha$), one has $c(\Sigma) \leq c(\Sigma')$. The variety V is called *birationally superrigid*, if one may always take $\alpha = id$.

The following proposition is an immediate consequence of the above definitions:

Proposition 1.3 ([P4] Prop. 5.1). Let V be a smooth Fano variety with $\text{Pic}(V) = \mathbb{Z}K_V$. If V is birationally rigid, then it is impossible to have a birational map $V \to V'$, with $V' \to S'$ a morphism with uniruled general fiber and S' a projective variety of dimension $\dim S' \geq 1$.

Proof. Assume there is a birational map $V \to V'$, with $\pi: V \to S'$ a morphism with uniruled general fiber and $\dim S' \geq 1$. Let D' be an effective Cartier divisor on S' and let $\Sigma' = \pi^*D'$. By Definition 1.2 there is a birational map $\alpha: V \to V$ such that if Σ is the birational transform of Σ' via the composition $\phi \circ \alpha$, then $c(\Sigma) \leq c(\Sigma')$. Note that since V is a Fano variety with $\text{Pic}(V) = \mathbb{Z}K_V$, one has $c(\Sigma) > 0$.

We claim that $c(\Sigma') = 0$: if there are $a, b > 0$ such that $a\pi^*D' + bK_{V'}$ is effective on V', then for a general fiber F of π (choose F uniruled, in the smooth locus of π and such that it is not contained in the divisor $a\pi^*D' + bK_{V'}$), one has that the divisor $(a\pi^*D' + bK_{V'})|_F = (bK_{V'})|_F = bK_F$ is effective on F. This is a contradiction, since F uniruled implies that $H^0(bK_F) = 0$ for all $b > 0$. \hfill \square

Note that since the condition of being uniruled is a closed condition \mathbb{K}, one may drop the word “general” from the statement of Proposition 1.3. Moreover, since the condition of being uniruled is a birational property, one may as well replace the condition of having a morphism $V' \to S'$ with having a birational map $V' \to S'$ with the same properties.

To geometrically motivate Definition 1.2, we recall the other definition of birational rigidity from [C9]. Recall that a morphism $f: V \to S$ is called a Mori fiber space if it has relative Picard number 1, $-K_V$ is relatively ample for f and $\dim S < \dim V$. Note, Fano varieties with Picard number 1 are trivially Mori fiber spaces. A birational map $\phi: V \to V'$ to another Mori fiber space $f': V' \to S'$ is square if there is a birational map $h: S \to S'$ such that $h \circ f = f' \circ \phi$ and the map ϕ induces an isomorphism on the general fibers.

Definition 1.4 ([C9] Def. 1.3). A Mori fiber space $f: V \to S$ is called birationally rigid if for any birational map $\phi: V \to V'$ to another Mori fiber space $f': V' \to S'$, there is a birational self-map $\alpha: V \to V$ such that $\phi \circ \alpha$ is square. If for any ϕ as above it follows that ϕ is square, then V is called birationally superrigid.

A Mori fiber space that satisfies Definition 1.2 also satisfies Definition 1.3, by the Sarkisov program, based on the Noether-Fano-Ishkovskikh inequalities; this is known.
in dimension 3 and conjectured in higher dimensions). By the Mori program, any
uniruled variety is birational to a Mori fiber space; hence, if in addition one assumes
the Mori program, the two definitions are equivalent.

It follows from Definition 1.4 that if V is a smooth Fano variety with Picard number 1 and birationally rigid, then there is no birational map $\phi : V \dasharrow V'$, with $f' : V' \to S'$ another Mori fiber space with $\dim S' > 0$. From the Mori program
for the relative case, one deduces Proposition 1.3. In particular, note that if V is
a smooth Fano variety with Picard number 1 and birationally rigid, then for any
V' another Fano variety of Picard number 1, if V' is birational to V, then $V \cong V'$.

2. Counterexamples using moduli spaces of bundles on curves

Let C be a smooth projective curve over \mathbb{C} of genus $g \geq 3$. Fix ξ to be a degree
1 line bundle on C. Let M be the moduli space of stable, rank 2 vector bundles
on C with determinant ξ. The moduli space M is a smooth, projective, variety
of dimension $3g - 3$. The Picard group of M is \mathbb{Z} \cite{DN}. Let Θ be the ample generator.
In fact, Θ is very ample \cite{BV}. Then $K_M \cong -2\Theta$ \cite{R}.

Let N be a non-singular element of the linear system $|\Theta|$. Let $\Theta' \in \text{Pic}(N)$ be
the restriction of Θ to N. The canonical bundle of N is $-\Theta'$. Since $g \geq 3$, by
Lefschetz’s theorem, Θ' generates $\text{Pic}(N)$. Therefore, the variety N satisfies the
conditions in Conjecture \cite{CA}. We prove the following:

Proposition 2.1. If N is a general element of the linear system $|\Theta|$, then N is a smooth Fano variety with $\text{Pic}(N) \cong \mathbb{Z}K_N$ that is not birationally rigid.

Proof. We start with a general construction. Let $e \geq 0$ and let \mathcal{L} be a line bundle
of degree $-e$ on C. Denote by $V_\mathcal{L}$ the space of extensions $\text{Ext}^1(\mathcal{L}^{-1} \otimes \xi, \mathcal{L}) \cong H^1(C, \mathcal{L}^2 \otimes \xi^{-1})$. Then $V_\mathcal{L}$ parametrizes extensions of the form

$$(*) \quad 0 \to \mathcal{L} \to \mathcal{E} \to \mathcal{L}^{-1} \otimes \xi \to 0.$$

The dimension of $V_\mathcal{L}$ is $2e + g$. Clearly, any two non-zero elements in $V_\mathcal{L}$ which differ
by a scalar define isomorphic vector bundles \mathcal{E}. Therefore, the isomorphism classes
of non-trivial extensions as above are parametrized by the projective space $\mathbb{P}(V_\mathcal{L})$.
The locus $Z_\mathcal{L} \subset \mathbb{P}(V_\mathcal{L})$ of extensions (*) with \mathcal{E} unstable is an irreducible subvariety
of codimension at least g \cite[Lemma 2.1]{CA}. There is a well-defined morphism

$$\kappa_\mathcal{L} : \mathbb{P}(V_\mathcal{L}) \setminus Z_\mathcal{L} \to M$$

that associates to an extension (*) the isomorphism class of \mathcal{E}. By \cite[2.3(1), or
Lemma A.1]{CA}

$$\kappa_\mathcal{L}^* \Theta \cong \mathcal{O}(2e + 1).$$

Consider the case when $e = g - 1$. Then $\mathbb{P}(V_\mathcal{L}) \cong \mathbb{P}^{3g - 3}$ and $\kappa_\mathcal{L}^* \Theta \cong \mathcal{O}(2g - 1)$. The following claim is a standard fact. For convenience, we include a short proof.

Claim 2.2. If \mathcal{L} is a line bundle of degree $1 - g$, the morphism $\kappa_\mathcal{L}$ in (2.1) is birational.

Proof of Claim 2.2 Note that for any $\mathcal{E} \in M$, by Riemann-Roch one has

$$\chi(\mathcal{E}^* \otimes \mathcal{L}^{-1} \otimes \xi) = 1.$$

Hence, for any $\mathcal{E} \in M$ one has

$$\text{Hom}(\mathcal{E}, \mathcal{L}^{-1} \otimes \xi) \cong H^0(\mathcal{E}^* \otimes \mathcal{L}^{-1} \otimes \xi) \neq 0.$$
If for general \(E \in M \), any non-zero morphism \(\phi : E \to L^{-1} \otimes \xi \) is surjective, then we are done, as \(\phi \) determines uniquely (up to scaling) the extension \((\square) \), and by dimension considerations, one must have that
\[
h^0(E^* \otimes L^{-1} \otimes \xi) = 1
\]
(i.e., the fiber of \(\kappa \) at a general point contains a unique closed point).

We prove that for general \(E \), a non-zero morphism \(\phi : E \to L^{-1} \otimes \xi \) must be surjective. Note that if \(\phi \) is not surjective, then its image is \(L^{-1} \otimes \xi(-D) \), for some effective divisor \(D \) of degree \(d > 0 \), and there is an exact sequence:

\[
0 \to L(D) \to E \to L^{-1} \otimes \xi(-D) \to 0.
\]

It follows from the stability of \(E \) that \(d < g \). For each \(0 < d < g \) construct the total space \(\mathbb{P}_d \) of extensions \((\ref{eq:2.2})\) by letting \(D \) vary in \(\text{Sym}^d(C) \): the space \(\mathbb{P}_d \) is a projective bundle over \(\text{Sym}^d(C) \) with fiber at \(D \) isomorphic to \(\mathbb{P}(V_{E(D)}) \). The dimension is:

\[
\dim \mathbb{P}_d = d + \dim V_{E(D)} - 1 = d + 2(g - 1 - d) + g - 1 = 3g - 3 - d.
\]

The vector bundle which is the middle term of the universal extension over \(\mathbb{P}_d \) induces a rational map \(\rho : \mathbb{P}_d \dashrightarrow M \). Since \(d > 0 \), the map \(\rho \) is not dominant. Therefore, a general \(E \in M \) will not sit in an exact sequence \((\ref{eq:2.2})\).

From the previous discussion and since \(\Theta \) is very ample, one has the following:

Claim 2.3. If \(N \) is a general element of the linear system \(|\Theta| \), then \(N \) is birational to an irreducible hypersurface \(X_{2g-1} \) in \(\mathbb{P}^{3g-3} \) of degree \(2g - 1 \).

Proposition \([\ref{prop:2.1}]\) follows now from Claim \([\ref{claim:2.3}]\) and Lemma \([\ref{lem:2.4}]\) \(\square \)

Lemma 2.4. For any irreducible hypersurface \(X_d \subset \mathbb{P}^n \) of degree \(d < n \) (possibly singular) there is a rational map \(\rho : X \dashrightarrow S \), \(\dim S > 0 \), with uniruled fibers.

Proof. Let \(S \) be a general pencil of hyperplanes \(\{H_s\}_{s \in S} \) in \(\mathbb{P}^n \). Then \(X_s = X \cap H_s \) are hypersurfaces of degree \(d \) in \(H_s \cong \mathbb{P}^{n-1} \). A smooth hypersurface of degree \(d < n \) in \(\mathbb{P}^{n-1} \) is Fano; hence, it is rationally connected \([\text{KMM}]\). It follows by deformation theory that any irreducible hypersurface of degree \(d < n \) in \(\mathbb{P}^{n-1} \) is uniruled. Hence, for all \(s \in S \) such that \(X_s \) is irreducible, \(X_s \) is uniruled. Therefore, the induced rational map \(\rho : X \dashrightarrow S \) has uniruled fibers. \(\square \)

Remark 2.5. The cohomology group \(H^4(M; \mathbb{Q}) \) has two independent generators \([\text{N}]\). Hence, by Lefschetz’s theorem, if \(g \geq 4 \), the rank of \(H^4(N; \mathbb{Q}) \) is also 2. Since again by Lefschetz’s theorem, the cohomology group \(H^4 \) of any smooth complete intersection of dimension \(\geq 5 \) is of rank 1, it follows that \(N \) is not a complete intersection.

3. **Description of the hypersurface \(X_{2g-1} \subset \mathbb{P}^{3g-3} \)**

Our construction of the map \(\kappa_L \) is a variant of the construction of Bertram \([\text{B}]\). The above results about the map \(\kappa_L \) (\(\deg L = 1 - g \)) also follow from \([\text{B}]\). We chose to include the above considerations (which are enough for the purpose of this note) because of their simplicity and to avoid referring to the technical results in \([\text{B}]\). However, Bertram’s powerful construction gives a precise description of the hypersurface \(X_{2g-1} \subset \mathbb{P}^{3g-3} \). We describe this below.
Let L be a line bundle of degree $1 - g$ on C. Then C has a natural embedding $C \subset \mathbb{P}(V_L) \cong \mathbb{P}^{3g-3}$ given by $L^{-2} \otimes \xi \otimes K_C$, since by Serre duality one has:

$$V_L \cong H^1(C, L^2 \otimes \xi^{-1}) \cong H^0(C, L^{-2} \otimes \xi \otimes K_C)^*.$$

Let $\text{Sec}^k(C)$ be the $(k+1)$-secant variety of C (i.e., the closure in \mathbb{P}^{3g-3} of the union of all the k-planes spanned by $k + 1$ distinct points on C).

Theorem 3.1 ([B] Thm. 1). There is a sequence of blow-ups $\pi: \tilde{\mathbb{P}}_C \to \mathbb{P}(V_L)$ with smooth centers (starting with the blow-up of $\mathbb{P}(V_L)$ along C) that resolves the rational map $\kappa_L: \mathbb{P}(V_L) \dashrightarrow M$ into a morphism $\tilde{\mathbb{P}}_C \to M$. There are g exceptional divisors $E_0, E_1, \ldots, E_{g-1}$, and E_k dominates the secant variety $\text{Sec}^k(C)$ for every k.

Theorem 3.2 ([B] Thm. 2, Prop. 4.7]). There is a natural identification

$$H^0(M, \Theta) \cong H^0(\tilde{\mathbb{P}}_C, (2g - 1)H - (2g - 3)E_0 - (2g - 5)E_1 - \ldots - E_{g-2}).$$

It follows from Theorem 3.2 that the proper transform \tilde{X} in $\tilde{\mathbb{P}}_C$ of the hypersurface $X_{2g-1} \subset \mathbb{P}^{3g-3}$ of Claim 2.3 is a general member of the linear system in (3.1). Hence, by Bertini, \tilde{X} is smooth.

Proposition 3.3. The singular locus of the hypersurface $X_{2g-1} \subset \mathbb{P}^{3g-3}$ has codimension $\geq g - 2$. Hence, if $g \geq 4$, then X is normal and the canonical bundle K_X is Cartier. Moreover, in this case X has terminal singularities.

Proof. Since the proper transform \tilde{X} of X is smooth, it follows that X is smooth outside $\text{Sec}^{g-1}(C) \cap X$. Since a general X does not contain $\text{Sec}^{g-1}(C)$, it follows that the singular locus of X has dimension at most $\dim \text{Sec}^{g-1}(C) - 1 = 2g - 2$. It is well-known that hypersurfaces X whose singular locus has codimension at least 2 are normal and the canonical class K_X is Cartier. Hence, if $g \geq 4$, then X is normal and has the canonical class:

$$K_X = \mathcal{O}_X(1 - g).$$

Consider the resolution $\pi: \tilde{X} \to X$. The canonical class of $\tilde{\mathbb{P}}_C$ is given by:

$$K_{\tilde{\mathbb{P}}_C} = -(3g - 2)H + (3g - 5)E_0 + (3g - 7)E_1 + \ldots + (g - 1)E_{g-2}.$$

The canonical class of \tilde{X} is given by:

$$K_{\tilde{X}} = (K_{\tilde{\mathbb{P}}_C} + \tilde{X})_{\tilde{X}} = -(g - 1)H + (g - 2)E_0 + (g - 2)E_1 + \ldots + (g - 2)E_{g-2}.$$

Hence, X has terminal singularities. \qed

References

[dF] de Fernex, T., Adjunction beyond thresholds and birationally rigid hypersurfaces; arxiv:math.AG/0604213

Department of Mathematics, University of Texas at Austin, Austin, Texas 78712
E-mail address: noni@math.utexas.edu
Current address: Department of Mathematics, University of Massachusetts, Amherst, Massachusetts 01003
E-mail address: noni@math.umass.edu