Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the critical points of the $ E_k$ functionals in Kähler geometry


Author: Valentino Tosatti
Journal: Proc. Amer. Math. Soc. 135 (2007), 3985-3988
MSC (2000): Primary 32Q20, 58E11
DOI: https://doi.org/10.1090/S0002-9939-07-08962-9
Published electronically: September 12, 2007
MathSciNet review: 2341949
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that a Kähler metric in the anticanonical class, that is a critical point of the functional $ E_k$ and has nonnegative Ricci curvature, is necessarily Kähler-Einstein. This partially answers a question of X.X. Chen.


References [Enhancements On Off] (What's this?)

  • 1. T. Aubin, Equations du type Monge-Ampère sur les variétés Kähleriennes compactes, Bull. Sci. Math. 102 (1976), 119-121. MR 0433520 (55:6496)
  • 2. S. Bando, T. Mabuchi, Uniqueness of Einstein Kähler metrics modulo connected group actions, Adv. Stud. Pure Math. 10 (1987), 11-40. MR 946233 (89c:53029)
  • 3. X.X. Chen, On the lower bound of energy functional $ E_1$. I. A stability theorem on the Kähler-Ricci flow, J. Geom. Anal. 16 (2006) no. 1, 23-38. MR 2211330 (2006j:53096)
  • 4. X.X. Chen, G. Tian, Ricci flow on Kähler-Einstein surfaces, Invent. Math. 147 (2002), no. 3, 487-544. MR 1893004 (2003c:53095)
  • 5. G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, Cambridge University Press, 1952. MR 0046395 (13:727e)
  • 6. T. Mabuchi, K-energy maps integrating Futaki invariants, Tôhoku Math. J. 38 (1986), 575-593. MR 867064 (88b:53060)
  • 7. G. Maschler, Central Kähler metrics, Trans. Amer. Math. Soc. 355 (2003), no.6, 2161-2182. MR 1973986 (2004c:53115)
  • 8. N. Pali, A consequence of a lower bound of the $ K$-energy, Int. Math. Res. Not. 2005, no. 50, 3081-3090. MR 2189501 (2006k:53116)
  • 9. D.H. Phong, J. Sturm, The Futaki invariant and the Mabuchi energy of a complete intersection, Comm. Anal. Geom. 12 (2004), no. 1-2, 323-343. MR 2074881 (2005c:32030)
  • 10. J. Song, B. Weinkove, Energy functionals and canonical Kähler metrics, to appear in Duke Math. J.
  • 11. G. Tian, Canonical metrics in Kähler geometry, Birkhäuser, 2000. MR 1787650 (2001j:32024)
  • 12. G. Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 137 (1997), 1-37. MR 1471884 (99e:53065)
  • 13. S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math. 31 (1978), 339-411. MR 480350 (81d:53045)
  • 14. S.-T. Yau, Open problems in geometry, Proc. Sympos. Pure Math. 54 (1993), 1-28 (problem 65). MR 1216573 (94k:53001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 32Q20, 58E11

Retrieve articles in all journals with MSC (2000): 32Q20, 58E11


Additional Information

Valentino Tosatti
Affiliation: Department of Mathematics, Harvard University, 1 Oxford St, Cambridge, Massachusetts 02138
Email: tosatti@math.harvard.edu

DOI: https://doi.org/10.1090/S0002-9939-07-08962-9
Received by editor(s): May 8, 2006
Received by editor(s) in revised form: October 2, 2006
Published electronically: September 12, 2007
Additional Notes: The author is supported by a Harvard Mathematics Department grant
Communicated by: Richard A. Wentworth
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society