Stability and exact multiplicity of periodic solutions of Duffing equations with cubic nonlinearities

Authors:
Hongbin Chen and Yi Li

Journal:
Proc. Amer. Math. Soc. **135** (2007), 3925-3932

MSC (2000):
Primary 34C10, 34C25

DOI:
https://doi.org/10.1090/S0002-9939-07-09024-7

Published electronically:
September 7, 2007

MathSciNet review:
2341942

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the stability and exact multiplicity of periodic solutions of the Duffing equation with cubic nonlinearities,

**1.**J.M. Alonso,*Optimal intervals of stability of a forced oscillator, Proc. Amer. Math. Soc.***123**(1995), 2031-2040. MR**1301005 (95k:34057)****2.**J.M. Alonso and R. Ortega,*Boundedness and global asymptotic stability of a forced oscillator, Nonlinear Anal.***25**(1995), 297-309. MR**1336527 (96e:34076)****3.**H.B. Chen and Yi Li,*Exact multiplicity for periodic solutions of a first-order differential equation, J. Math. Anal. Appl.***292**(2004), 415-422. MR**2047621 (2004m:34090)****4.**-,*Existence, uniqueness, and stability of periodic solutions of an equation of Duffing type, Discrete Contin. Dyn. Syst.*, accepted.**5.**H.B. Chen, Yi Li, and X.J. Hou,*Exact multiplicity for periodic solutions of Duffing type, Nonlinear Anal.***55**(2003), 115-124. MR**2001635 (2004g:34072)****6.**P.T. Church and J.G. Timourian,*Global cusp maps in differential and integral equations, Nonlinear Anal.***20**(1993), 1319-1343. MR**1220838 (94h:58043)****7.**C. Fabry, J. Mawhin, and M.N. Nkashama,*A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations, Bull. London Math. Soc.***18**(1986), 173-180. MR**818822 (87e:34072)****8.**G. Fournier and J. Mawhin,*On periodic solutions of forced pendulum-like equations, J. Differential Equations***60**(1985), no. 3, 381-395. MR**811773 (87a:34039)****9.**S. Gaete and R.F. Manásevich,*Existence of a pair of periodic solutions of an O.D.E. generalizing a problem in nonlinear elasticity, via variational methods, J. Math. Anal. Appl.***134**(1988), 257-271. MR**961337 (89k:34059)****10.**G. Katriel,*Periodic solutions of the forced pendulum: Exchange of stability and bifurcations*, J. Differential Equations**182**(2002), no. 1, 1-50. MR**1912068 (2003e:34072)****11.**A.C. Lazer and P.J. McKenna,*On the existence of stable periodic solutions of differential equations of Duffing type*, Proc. Amer. Math. Soc.**110**(1990), 125-133. MR**1013974 (90m:34093)****12.**-,*Existence, uniqueness, and stability of oscillations in differential equations with asymmetric nonlinearities*, Trans. Amer. Math. Soc.**315**(1989), 721-739. MR**979963 (90a:34011)****13.**J. Mawhin,*Topological degree and boundary value problems for nonlinear differential equations*, Topological Methods for Ordinary Differential Equations (Montecatini Terme, 1991) (M. Furi and P. Zecca, eds.), Lecture Notes in Math., vol. 1537, Springer, Berlin, 1993, pp. 74-142. MR**1226930 (94h:47121)****14.**F.I. Njoku and P. Omari,*Stability properties of periodic solutions of a Duffing equation in the presence of lower and upper solutions*, Appl. Math. Comput.**135**(2003), 471-490. MR**1937268 (2003h:34110)****15.**P. Omari and M. Trombetta,*Remarks on the lower and upper solutions method for second- and third-order periodic boundary value problems*, Appl. Math. Comput.**50**(1992) 1-21. MR**1164490 (93d:34040)****16.**R. Ortega,*Stability and index of periodic solutions of an equation of Duffing type*, Boll. Un. Mat. Ital. B (7)**3**(1989), 533-546. MR**1010522 (90g:34045)****17.**G. Tarantello,*On the number of solutions for the forced pendulum equation*, J. Differential Equations**80**(1989), 79-93. MR**1003251 (90h:34058)****18.**A. Tineo,*Existence of two periodic solutions for the periodic equation*, J. Math. Anal. Appl.**156**(1991), 588-596. MR**1103031 (92c:34050)****19.**-,*A result of Ambrosetti-Prodi type for first order ODEs with cubic non-linearities, Part I*, Ann. Mat. Pura Appl. (4)**182**(2003), 113-128. MR**1985559 (2004c:34129)****20.**P.J. Torres and M. Zhang,*A monotone iterative scheme for a nonlinear second order equation based on a generalized anti-maximum principle*, Math. Nachr.**251**(2003), 101-107. MR**1960807 (2004a:34032)****21.**A. Zitan and R. Ortega,*Existence of asymptotically stable periodic solutions of a forced equation of Liénard type*, Nonlinear Anal.**22**(1994), no. 8, 993-1003. MR**1277595 (95f:34047)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
34C10,
34C25

Retrieve articles in all journals with MSC (2000): 34C10, 34C25

Additional Information

**Hongbin Chen**

Affiliation:
Department of Mathematics, Xi’an Jiaotong University, Xi’an, People’s Republic of China

Email:
hbchen@mail.xjtu.edu.cn

**Yi Li**

Affiliation:
Department of Mathematics, Hunan Normal University, Changsha, Hunan, People’s Republic of China

Address at time of publication:
Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242

Email:
yi-li@uiowa.edu

DOI:
https://doi.org/10.1090/S0002-9939-07-09024-7

Keywords:
Duffing equation,
periodic solution,
stability

Received by editor(s):
September 27, 2006

Published electronically:
September 7, 2007

Communicated by:
Carmen C. Chicone

Article copyright:
© Copyright 2007
American Mathematical Society