DEGREE ONE MAPS
BETWEEN HYPERBOLIC SMALL 3-MANIFOLDS

MICHEL BOILEAU AND SHICHENG WANG

(Communicated by Daniel Ruberman)

ABSTRACT. We construct the first examples of degree one maps between non-homeomorphic closed hyperbolic small 3-manifolds.

1. INTRODUCTION

All terminologies not defined in this paper are standard; see [Ja], [Ro] and [Th].

A compact 3-manifold M is small if it is orientable, irreducible and if any incompressible surface in M is parallel to ∂M. A knot k in a 3-manifold M is small if its exterior $M - \text{int} \mathcal{N}(k)$, denoted by $E(k)$, is a small 3-manifold.

The main theme of this work is to study the existence of degree one maps between closed hyperbolic small 3-manifolds. All known and expected closed small 3-manifolds are either Seifert fibered or hyperbolic. The existence of degree one maps between closed small Seifert manifolds has been studied (see [HWZ] and the references there).

For closed hyperbolic small 3-manifolds, even some general results for degree one maps between them have been established (see [RW] and [BW2]), but to our knowledge, there are no known examples of such degree one maps. Indeed the authors of [RW] wondered how to find such degree one maps when they were working on [RW], which is the first motivation of the present work.

Note that there are many ways of producing degree one maps between closed hyperbolic 3-manifolds (cf. [BW1], [Ka], [Ru]), but none of them insure that both hyperbolic manifolds are small. The following theorem provides the first examples of degree one maps between non-homeomorphic closed small hyperbolic 3-manifolds.

Theorem 1.1. There are infinitely many pairs of non-homeomorphic, closed, small hyperbolic 3-manifolds (M, N) such that there is a degree one map $f : M \to N$.

Remark 1.2. The construction of degree one maps in Theorem 1.1 is based on Thurston’s hyperbolic Dehn surgery theorem [Th] and Proposition 2.2, which provides non-trivial proper degree one maps between the exteriors of hyperbolic small knots in the 3-sphere. These are also, to our knowledge, the first such examples. Our examples of degree one maps in Proposition 2.2 are constructed from the exteriors of some n-bridge knots, with $n > 2$, to the exteriors of some 2-bridge knots.
It would be interesting to find a degree one map between the exteriors of two hyperbolic 2-bridge knots, since such a degree one map will produce degree one maps between closed 3-manifolds obtained by Dehn surgeries on those knots with the same coefficients, and for most given coefficients those two closed 3-manifolds are small and hyperbolic.

In general we wonder if there is a degree one map \(f : E(k_1) \to E(k_2) \) for \(k_1 \) and \(k_2 \) two knots in \(S^3 \), is the bridge number of \(k_1 \) not smaller than that of \(k_2 \) [W]?

2. Examples of degree one maps between small hyperbolic 3-manifolds

This section is devoted to the proof of Theorem 1.1. Our construction uses tangle sum in the sense of Conway.

A tangle \(T = (B^3, a_1 \cup a_2) \) is a properly embedded disjoint pair of arcs \((a_1 \cup a_2, \partial a_1 \cup \partial a_2) \hookrightarrow (B^3, \partial B^3) \).

Such a tangle is irreducible if there is no 2-sphere \(S \subset B^3 \) meeting transversely an arc \(a_i \) in two points such that the intersection of the 3-ball \(V \) bounded by \(S \) in \(B^3 \) and \(a_i \) is a knotted arc in \(V \).

We denote by \(T_0 = (B^3, b_1 \cup b_2) \) the trivial tangle. It is formed by two unknotted arcs separated by a properly embedded disk in \(B^3 \) disjoint from them.

Our construction of non-trivial degree one maps between small closed hyperbolic 3-manifolds relies on Thurston’ hyperbolic Dehn surgery theorem and the following two propositions:

Proposition 2.1. There exists an irreducible, non-trivial tangle \(T = (B^3, a_1 \cup a_2) \) with the following properties:

1. The 2-fold covering of \(B^3 \) branched along \(a_1 \cup a_2 \) is the exterior \(E \) of a small hyperbolic knot in \(S^3 \).
2. There is a proper degree one map \(f : T = (B^3, a_1 \cup a_2) \to T_0 = (B^3, b_1 \cup b_2) \) onto the trivial tangle \(T_0 \) such that
 - the restriction \(f|_{\partial B^3 : \partial B^3} \to \partial B^3 \) is a homeomorphism,
 - for \(i \in \{1, 2\} \), \(f^{-1}(b_i) = a_i \) and the restriction \(f| : a_i \to b_i \) is a homeomorphism.

By using a Conway sum of the tangle \(T \) with rational tangles, we deduce from Proposition 2.1 the following result:

Proposition 2.2. There are infinitely many hyperbolic small knots in \(S^3 \) with bridge number \(\geq 3 \) such that their exteriors admit a proper degree one map to the exterior of a hyperbolic 2-bridge knot.

The three subsections below are devoted to the proofs of Proposition 2.1, Proposition 2.2 and Theorem 1.1, respectively.

2.1. Construction of the tangle \(T \) and proof of Proposition 2.1. We consider the non-alternating knot \(\tilde{k} \) with eight crossings, the knot \(8_{21} \) in Rolfsen’s book tabulation [Ro]. It is the Montesinos knot \(M(1; 1/2, 2/3, 2/3) \) with 3-branches in the notation of [BoZ]. By Oertel’s work [O1] it is a small hyperbolic knot. It is also a fibred knot with fibre a surface of genus 2; see for example [Ga].

1 After the acceptance of this paper, T. Ohtsuki, R. Riley and M. Sakuma [ORS] informed us that they have constructed degree one maps between 2-bridge knot complements.
Moreover, it is a strongly invertible knot; i.e., there is a smooth involution \(\tau \) of the pair \((S^3, \hat{k})\) such that \(\text{Fix}(\tau) \), the fixed point set of \(\tau \), is an unknotted circle and meets \(\hat{k} \) in exactly two points (Figure 1).

After an isotopy of the fibration of the exterior \(E = E(\hat{k}) \), we can assume that the restriction of \(\tau \) on \(E \) is fibre preserving. Hence there are two fibres \(F_1 \) and \(F_2 \) invariant by \(\tau \) in \(E \). Moreover \(\text{Fix}(\tau) \cap E = \tilde{a}_1 \cup \tilde{a}_2 \), where \(\tilde{a}_i \) is a properly embedded arc in \(F_i \) which separates \(F_i \) into two symmetric parts, \(i = 1, 2 \) (Figure 1).

The orbifold quotient \(E/\tau \) has an underlying space \(|E/\tau| \) homeomorphic to \(B^3 \) and the ramification locus formed by the union of two properly embedded disjoint arcs \(a_1 \cup a_2 \) in \(E/\tau \). That gives naturally a tangle \(T = (|E/\tau|, a_1 \cup a_2) \), which by construction verifies property (1) of Proposition 2.1.

To verify property (2), we construct a proper degree one map \(\tilde{f} : E \to S^1 \times D^2 \), which is equivariant with respect to the involution \(\tau \) on \(E \) and to the involution \(\tau_0 \) obtained on \(S^1 \times D^2 \) by extending the involution \(\tau|_{\partial E} \) to the solid torus.

We identify \(\partial E \) with \(S^1 \times \partial D^2 \) by choosing a preferred meridian-longitude coordinate system \((\mu, \lambda)\) on \(\partial E \) and by identifying the meridian \(\mu \) with \(S^1 \times \{\ast\} \) and the longitude \(\lambda \), which is the boundary of a fibre of the fibration of \(E \), with \(\{\ast\} \times \partial D^2 \).

The involution \(\tau_0 \) preserves two meridian disks \(D_1 \) and \(D_2 \), and \(\text{Fix}(\tau_0) \cap D_i = \tilde{b}_i \) is a properly embedded arc in \(D_i \) for \(i \in \{1, 2\} \). In particular the orbifold quotient \(S^1 \times D^2/\tau_0 \) has \(B^3 \) as its underlying space and the union of the two disjoint properly embedded arcs \(b_1 \cup b_2 \) as its ramification locus. That gives a trivial tangle \(T_0 = (|S^1 \times D^2/\tau_0|, b_1 \cup b_2) \).

The construction of the equivariant degree one map \(\tilde{f} \) is done in three steps:

Step 1. By the choice of \(\tau_0 \) on \(S^1 \times D^2 \) and the identification of \(\partial E \) with \(S^1 \times \partial D^2 \), we can take \(\tilde{f} : \partial E \to \partial(S^1 \times D^2) \) to be the identity.

Step 2. We extend \(\tilde{f} \) equivariantly to the two fibres \(F_1 \) and \(F_2 \), so that for \(i \in \{1, 2\} \), \(\tilde{f}(F_i) = D_i \), \(\tilde{f}^{-1}(\tilde{b}_i) = \tilde{a}_i \), and \(\tilde{f}|_{\tilde{a}_i} : \tilde{a}_i \to \tilde{b}_i \) is a homeomorphism.

Since the properly embedded arc \(\tilde{a}_i \subset F_i \) is separating, we have \(F_i = F'_i \cup \tau(F'_i) \) for \(i \in \{1, 2\} \), where \(F'_i \) is a genus 1 surface. In the same way, we have \(D_i = D'_i \cup \tau(D'_i) \) for \(i \in \{1, 2\} \), where \(D'_i \) is a disk.

We consider the pinch \(p_i : F'_i \to D'_i \) which is the identity on a collar neighborhood of \(\partial F'_i \), for \(i \in \{1, 2\} \). Then we extend \(\tilde{f} \) equivariantly on \(F_i \) by taking \(\tilde{f}|_{F'_i} = p_i \) and \(\tilde{f}|_{\tau(F'_i)} = \tau_0 \circ p_i \circ \tau \), for \(i \in \{1, 2\} \).
At this point, for $i \in \{1, 2\}$, $\tilde{f}(F_i) = D_i$, $\tilde{f}^{-1}(\tilde{b}_i) = \tilde{a}_i$ and $\tilde{f} : \tilde{a}_i \to \tilde{b}_i$ is a homeomorphism.

Step 3. We extend \tilde{f} equivariantly to the remaining part of E.

By cutting E along the two fibres $F_1 \cup F_2$, we get $E = F \times [1, 2] \cup F_1 \cup F_2 \tau(F \times [1, 2])$. In the same way $S^1 \times D^2 = D^2 \times [1, 2] \cup D_1 \cup D_2 \tau_0(D^2 \times [1, 2])$.

From Steps 1 and 2 we have defined a degree one map $\tilde{f} : \partial(F \times [1, 2]) \to \partial(D^2 \times [1, 2])$. Since $D^2 \times [1, 2]$ is a 3-ball, we can extend this map to a degree one map $\tilde{f} : F \times [1, 2] \to D^2 \times [1, 2]$.

Since $\tilde{f} : F_1 \cup F_2 \cup \partial E \to D_1 \cup D_2 \cup \partial(S^1 \times D^2)$ is already equivariant with respect to τ and τ_0, we can finally define the map $\tau_0 \circ \tilde{f} \circ \tau : \tau(F \times [1, 2]) \to \tau_0(D^2 \times [1, 2])$ to get the desired proper degree one map $\tilde{f} : E \to S^1 \times D^2$ with the following properties:

(a) $\tau_0 \circ \tilde{f} = \tilde{f} \circ \tau$.

(b) The restriction $\tilde{f}|_{\partial E} : \partial E \to S^1 \times \partial D^2$ is the identity with respect to the chosen parametrization of ∂E.

(c) For $i \in \{1, 2\}$, $\tilde{f}^{-1}(\tilde{b}_i) = \tilde{a}_i$ and the restriction $\tilde{f}|_{\tilde{a}_i} : \tilde{a}_i \to \tilde{b}_i$ is a homeomorphism.

Now this equivariant proper degree one map \tilde{f} covers through the involutions τ and τ_0 a proper degree one map: $f : T = (|E/\tau|, a_1 \cup a_2) \to T_0 = (|S^1 \times D^2/\tau_0|, b_1 \cup b_2)$, between the tangle T and the trivial tangle T_0. This degree one map verifies the properties of (2) of Proposition 2.1 because of properties (b) and (c) of \tilde{f}. That finishes the proof of Proposition 2.1.

2.2. Proof of Proposition 2.2

In the parametrization of ∂E by the preferred meridian-longitude pair $(\tilde{\mu}, \tilde{\lambda})$, any simple closed curve on ∂E is determined by a unique slope (p, q), where $p \geq 0$ and $q \in \mathbb{Z}$ are coprime. We denote by $E(p, q)$ the closed orientable 3-manifold obtained from E by Dehn filling ∂E along the slope (p, q).

The involution τ on the knot exterior E can be extended to the glued solid torus to get an involution still called τ on the closed 3-manifold $E(p, q)$. According to Montesinos's construction [Mo], the quotient of $E(p, q)$ by τ is S^3 and the branching locus $k(p, q)$ is a knot or a link with two components, according to whether p is odd or even.

This knot or link $k(p, q)$ is obtained by a Conway sum of the tangle T with the rational tangle $R(p, q)$ of type (p, q) (see Figure 2), where the outside tangle T is drawn by using Montesinos’s technique.
Now, the degree one map $f : T \to T_0$ can be extended trivially by a homeomorphism to a degree one map of pairs $g : (S^3, k(p, q)) \to (S^3, b(p, q))$, such that

- $b(p, q)$ is the 2-bridge knot or link, obtained by a Conway sum of the trivial tangle T_0 with the rational tangle $R(p, q)$,
- $g^{-1}(b(p, q)) = k(p, q)$ and the restriction $\bar{g} : k(p, q) \to b(p, q)$ is a homeomorphism.

This last property follows immediately from the properties of (2) of f in Proposition 2.1.

By considering the restriction of g to the exterior of $k(p, q)$, Proposition 2.2 follows now from the following lemma:

Lemma 2.3. For $p = 2p' + 1, p' > 1$ and $q \neq np \pm 1, n \in \mathbb{Z}$, $k(p, q)$ and $b(p, q)$ are small hyperbolic knots in S^3. Moreover $k(p, q)$ has bridge number ≥ 3.

Proof. By the classification of 2-bridge knots or links (cf. [BuZ]), $b(p, q)$ is a hyperbolic knot iff $p = 2p' + 1, p' > 1$ and $q \neq np \pm 1, n \in \mathbb{Z}$. By [HT] it is a small knot.

By Oertel [O2] (see also [Dun1]) the boundary slopes of the knot 8_{21} are the following integral slopes:

$$\{(12, -1), (6, -1), (2, -1), (0, 1), (1, 1)\}.$$}

In particular all odd $p > 1$ are not in this list. So for the slopes (p, q) given in Lemma 2.3, the closed 3-manifolds $E(p, q)$ are small.

Since $E(p, q)$ is the 2-fold branched covering of the knot $k(p, q)$, it follows from the equivariant Dehn lemma that $k(p, q)$ is a small knot in S^3 (cf. [GL]). Hence it is either a hyperbolic or a torus knot.

It cannot be a torus knot since its exterior admits a proper degree one map onto the exterior of a hyperbolic 2-bridge knot. This would contradict the fact that the simplicial volume of a torus knot exterior vanishes, while it is always non-zero for a hyperbolic knot exterior.

The knot $k(p, q)$ has bridge number ≥ 3. Otherwise its 2-fold branched covering would be a lens space and by the cyclic surgery theorem [CGLS] q would be equal to ± 1, since \hat{k} is a hyperbolic knot. This contradicts our choice for q.

That finishes the proof of Lemma 2.3 and hence of Proposition 2.2. \qed

2.3. Degree one map between closed small hyperbolic 3-manifolds and proof of Theorem 1.1.

In Proposition 2.2 we constructed a small hyperbolic knot $k_1 \subset S^3$ with bridge number ≥ 3 and a hyperbolic 2-bridge knot $k_2 \subset S^3$ such that there is a degree one map $g : (S^3, k_1) \to (S^3, k_2)$ such that $g^{-1}(k_2) = k_1$ and such that the restriction $\bar{g} : k_1 \to k_2$ is a homeomorphism. Let E_1 and E_2 be the exteriors of k_1 and k_2, respectively. As before we choose for $i \in \{1, 2\}$ a trivialization of ∂E_i by a preferred meridian-longitude pair (μ_i, λ_i). Then (after possibly some isotopy on the boundary) g induces a proper degree one map $h : E_1 \to E_2$ such that

- the restriction $h| : \partial E_1 \to \partial E_2$ is a homeomorphism,
- $h(\mu_1) = \mu_2$ and $h(\lambda_1) = \lambda_2$.

For any slope (r, s) on $\partial E_i, i = 1, 2$, this degree one map h extends trivially by a homeomorphism to a degree one map $h_{r, s} : E_1(r, s) \to E_2(r, s)$. Now Theorem 1.1 is a consequence of the following lemma:
Lemma 2.4. For almost all slopes \((r, s)\) (i.e. except finitely many), the two closed orientable 3-manifolds \(E_1(r, s)\) and \(E_2(r, s)\) are small, hyperbolic and not homeomorphic.

Proof. By [Hat] there are only finitely many slopes \((p, q)\) that can be boundary slopes on either \(\partial E_1\) or \(\partial E_2\). Since \(k_1\) and \(k_2\) are small knots in \(S^3\), if \((r, s)\) avoids this finite set of slopes, then \(E_1(r, s)\) and \(E_2(r, s)\) are small, closed 3-manifolds.

Let \(v_i = \text{vol}(E_i)\) be the hyperbolic volume of \(E_i, i \in \{1, 2\}\). Since \(k_1\) is not a 2-bridge knot, \(E_1\) is not homeomorphic to \(E_2\), because knots are determined by their complement in \(S^3\). Since there is a proper degree one \(h : E_1 \to E_2\), Gromov-Thurston’s strict rigidity theorem ([Th, Chap. 6], [Dun2]) implies that \(v_1 > v_2\).

By Thurston’s hyperbolic Dehn surgery theorem ([Th, Chap. 4]; see also [BP, Appendix B]) and Schlafli’s formula (cf. [Mi]), there is a constant \(c > 0\) (depending only on \(k_1\) and \(k_2\)) such that for \(r^2 + s^2 \geq c^2\) the following happens:

- both \(E_1(r, s)\) and \(E_2(r, s)\) are hyperbolic,
- \(v_1 > \text{vol}(E_1(r, s)) > v_2 > \text{vol}(E_2(r, s))\).

Therefore if \((r, s)\) avoids the finite set of slopes \(r^2 + s^2 < c^2\), then \(E_1(r, s)\) and \(E_2(r, s)\) are both hyperbolic and not mutually homeomorphic.

This finishes the proof of Lemma 2.4 and of Theorem 1.1. □

Remark 2.5. With further effort, one can show that the bridge number of the knots \(k(p, q)\) in Proposition 2.2 is at most 4 and the Heegaard genus of the 3-manifolds \(E_1(r, s)\) in Lemma 2.3 is at most 3.

ACKNOWLEDGMENTS

We wish to thank A. Kawauchi and A. Reid for helpful conversations.

REFERENCES

Laboratoire Émile Picard, CNRS UMR 5580, Université Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse Cedex 4, France
E-mail address: boileau@picard.ups-tlse.fr

Department of Mathematics, LAMA, Peking University, Beijing 100871, People’s Republic of China
E-mail address: wangsc@math.pku.edu.cn