Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On SCH and the approachability property


Authors: Moti Gitik and Assaf Sharon
Journal: Proc. Amer. Math. Soc. 136 (2008), 311-320
MSC (2000): Primary 03E35, 03E55
DOI: https://doi.org/10.1090/S0002-9939-07-08716-3
Published electronically: October 12, 2007
MathSciNet review: 2350418
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a model of $ {}^\neg SCH +^\neg AP +$ (Very Good Scale). This answers questions of Cummings, Foreman, Magidor and Woodin.


References [Enhancements On Off] (What's this?)

  • 1. S. Ben-David and M. Magidor, The weak $ \square^*$ is really weaker that the full square, J. Symbolic Logic 51 (1986) 1029-1033. MR 0865928 (88a:03117)
  • 2. J. Cummings, M. Foreman and M. Magidor, Squares, scales and stationary reflection, Journal of Mathematical Logic 1 (2001), 35-98. MR 1838355 (2003a:03068)
  • 3. J. Cummings and E. Schimmerling, Indexed squares, Israel Journal of Mathematics,131 (2002), 61-99. MR 1942302 (2004k:03085)
  • 4. M. Gitik and M. Magidor, Extender Based Forcing, J. of Symbolic Logic,59(2)(1994),445-460. MR 1276624 (95k:03079)
  • 5. M. Gitik, Prikry Type Forcings, Handbook of Set Theory, eds. M. Foreman, A. Kanamori and M. Magidor,to appear. (www.math.tau.ac.il/ gitik)
  • 6. T. Jech, Set Theory. The Third Millennium Edition, Springer 2003. MR 1940513 (2004g:03071)
  • 7. A. Kanamori, The Higher Infinite, Springer 1994. MR 1321144 (96k:03125)
  • 8. C. Merimovich, A Power Function with a Fixed Finite Gap Everywhere, J. of Symbolic Logic, to appear (arXiv:math.LO/0005179).
  • 9. S. Shelah, On successors of singular cardinals, Logic Colloquium 78, eds. M. Boffa, D. van Dalen and K. MacAloon, (1979), 357-380. MR 0567680 (82d:03079)
  • 10. S. Shelah, Reflecting stationary sets and successors of singular cardinals, Archive Math. Logic 31 (1991), 25-53. MR 1126352 (93h:03072)
  • 11. S. Shelah, Cardinal Arithmetic, Oxford University Press, Oxford (1994). MR 1318912 (96e:03001)
  • 12. R. Solovay, Strongly compact cardinals and the GCH, Proceedings of the Tarski Symposium, Proceedings of Symposia in Pure Mathematics, vol.25, AMS (1974), 365-372. MR 0379200 (52:106)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 03E35, 03E55

Retrieve articles in all journals with MSC (2000): 03E35, 03E55


Additional Information

Moti Gitik
Affiliation: School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
Email: gitik@post.tau.ac.il

Assaf Sharon
Affiliation: School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
Address at time of publication: Department of Mathematics, University of California, Irvine, California 92717
Email: sharona@math.uci.edu

DOI: https://doi.org/10.1090/S0002-9939-07-08716-3
Received by editor(s): April 17, 2005
Received by editor(s) in revised form: December 5, 2005, and March 14, 2006
Published electronically: October 12, 2007
Additional Notes: The authors are grateful to John Krueger, James Cummings and the referee for their remarks and corrections
Communicated by: Julia Knight
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society