MOD 4 GALOIS REPRESENTATIONS AND ELLIPTIC CURVES

CHRISTOPHER HOLDEN

(Communicated by Ken Ono)

ABSTRACT. Galois representations \(\rho : G_Q \rightarrow GL_2(\mathbb{Z}/n) \) with cyclotomic determinant all arise from the \(n \)-torsion of elliptic curves for \(n = 2, 3, 5 \). For \(n = 4 \), we show the existence of more than a million such representations which are surjective and do not arise from any elliptic curve.

1. Introduction

Given an elliptic curve \(E \) defined over \(\mathbb{Q} \), its \(n \)-torsion subgroup \(E[n] \) is isomorphic to \((\mathbb{Z}/n)^2 \) as an abstract group. The Galois group of \(\mathbb{Q}(E[n]) \) over \(\mathbb{Q} \) embeds into \(GL_2(\mathbb{Z}/n) \). We then have a continuous Galois representation

\[
\rho_{E,n} : G_Q = \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{Aut}(E[n]) \hookrightarrow GL_2(\mathbb{Z}/n).
\]

The composition of \(\rho_{E,n} \) with the determinant map is the mod \(n \) cyclotomic character. Thus \(\rho_{E,n} \) is odd, that is, \(\det(\rho_{E,n}(\text{complex conjugation})) = -1 \). In this way, a continuous mod \(n \) Galois representation with cyclotomic determinant is created from the elliptic curve. Naturally, one asks if every such representation corresponds to the \(n \)-torsion of some elliptic curve.

For \(n = 2 \), there is an elementary verification of this question (see below), and for \(n = 3, 5 \), an affirmative answer is given in [7] and [8]. For all primes \(n \geq 7 \) it has been shown that there exist continuous, irreducible mod \(n \) Galois representations with cyclotomic determinant that do not come from the \(n \)-torsion of any elliptic curve. See [2] and [5].

When \(n \) is not prime, less is known. [7] gives a mod 4 representation with image isomorphic to \(\mathbb{Z}/2 \) which does not correspond to any elliptic curve’s 4-torsion, but the approach does not carry over to representations having larger images. In this paper, we show the existence of many surjective mod 4 representations with cyclotomic determinant which do not arise from the 4-torsion of any elliptic curve.

Theorem 1. There exist continuous, surjective mod 4 Galois representations having cyclotomic determinant which do not arise from the 4-torsion of any elliptic curve.

Equivalently, we prove the existence of a Galois extension \(W/\mathbb{Q} \) such that

1. \(\text{Gal}(W/\mathbb{Q}) \simeq GL_2(\mathbb{Z}/4) \);
2. \(\mathbb{Q}(i) \subset W \) is the fixed field of \(SL_2(\mathbb{Z}/4) \);
3. There is no elliptic curve \(E \) such that \(W = \mathbb{Q}(E[4]) \).

Received by the editors May 12, 2006 and, in revised form, September 1, 2006.

2000 Mathematics Subject Classification. Primary 14H52.
Let \(\overline{\rho} : G_\mathbb{Q} \to GL_2(\mathbb{Z}/4) \) be a continuous and surjective homomorphism having cyclotomic determinant. The fixed field of the kernel of \(\overline{\rho} \) is a finite extension \(W/\mathbb{Q} \) such that \(\text{Im}(\overline{\rho}) \simeq \text{Gal}(W/\mathbb{Q}) \simeq GL_2(\mathbb{Z}/4) \). Likewise, such an extension determines a mapping of \(G_\mathbb{Q} \) into \(GL_2(\mathbb{Z}/4) \). (1) guarantees that \(\overline{\rho} \) is surjective and continuous, whilst (2) is equivalent to \(\overline{\rho} \) having cyclotomic determinant.

In the following sections we describe \(G_\mathbb{Q} = GL_2(\mathbb{Z}/4) \) using two of its normal subgroups \(M \) and \(N \) where \(M \cap N = 1 \) and \([G : MN] = 2 \) (see Theorem 2). Then a field \(W/\mathbb{Q} \) satisfying (1) is the product of two quartic subfields \(M \) and \(N \) where \(\text{Gal}(M/\mathbb{Q}) \simeq G/M \) and \(\text{Gal}(N/\mathbb{Q}) \simeq G/N \). A criterion developed by Cremona in [4] allows us to find fields \(M/\mathbb{Q} \) which do not come from the 4-torsion of any elliptic curve. It is then a simple matter to construct \(N \) so that \(W = MN \) satisfies (2) and (3). In fact, we are able to find 1,628,554 such counterexamples. We expect, but are unable to show, that there are infinitely many.

2. 2-Torsion and \(S_3 \)-extensions

When \(\overline{\rho} \) is a surjective and continuous mod 2 representation (det(\(\overline{\rho} \)) is necessarily trivial), it has image \(GL_2(\mathbb{Z}/2) \simeq S_3 \), the symmetric group on 3 letters. Given a finite Galois extension \(L/\mathbb{Q} \) with Galois group isomorphic to \(S_3 \), there exists an irreducible cubic polynomial \(f \in \mathbb{Q}[x] \) such that \(L \) is the splitting field of \(f \). Then the nontrivial 2-torsion points of the elliptic curve \(E : y^2 = f \) are \((\phi_i, 0)\), where the \(\phi_i \) are the roots of \(f \).

Thus \(L = \mathbb{Q}(E[2]) \) and \(E[2] \simeq V_2 \), the Galois module corresponding to \(\overline{\rho} \). Any other irreducible cubic polynomial \(g \) with coefficients in \(\mathbb{Q} \) and roots generating \(L \) gives an elliptic curve \(E' : y^2 = g \) for which \(E'[2] \simeq E[2] \simeq V_2 \). Furthermore, every elliptic curve having this property arises in this manner.

In addition to supplying concrete motivation for the other cases, this is directly relevant to the present discussion since \(E[2] \subset E[4] \) for any elliptic curve \(E \) defined over \(\mathbb{Q} \). As with the above case, we aim to understand surjective mod 4 representations by considering extensions with Galois group \(GL_2(\mathbb{Z}/4) \).

3. \(GL_2(\mathbb{Z}/4) \) as a Galois group

Let \(S_4 \) be the symmetric group on 4 letters, \(A_4 \) its alternating subgroup; let \(D_4 \) denote the dihedral group of order 8 and let \(V_4 \) denote the Klein four-group.

Theorem 2. \(\mathcal{G} = GL_2(\mathbb{Z}/4) \) has unique normal subgroups \(M \) and \(N \) so that

1. \(M \simeq V_4 \) and \(\mathcal{G}/M \simeq S_4 \);
2. \(N \simeq A_4 \) and \(\mathcal{G}/N \simeq D_4 \);
3. \(M \cap N \) is trivial;
4. \([\mathcal{G} : MN] = 2 \).

Also, \(\mathcal{G} \) is the only group (up to isomorphism) satisfying all of the above properties.
Figure 1. $GL_2(\mathbb{Z}/4)$ as a Galois group

Proof. This follows from a more general set of theorems concerning the structure of $GL_2(\mathbb{Z}/n)$ as well as basic group theory. See [1, section 5.1]. We discovered these facts via MAGMA by constructing this group, looking for relations among normal subgroups and inspecting other groups of the same order.

Remark. While MN and $SL_2(\mathbb{Z}/4)$ are both index-2 subgroups of G, it is not true in general that $MN \not\cong SL_2(\mathbb{Z}/4)$.

An immediate consequence of this theorem is an analogous statement concerning field extensions (see also Figure 1):

Corollary 3. Let K be a field. Any extension W/K with Galois group G has 2 unique normal subextensions, M/K and N/K, such that

1. $\text{Gal}(W/M) = M$ and $\text{Gal}(M/K) \cong S_4$;
2. $\text{Gal}(W/N) = N$ and $\text{Gal}(N/K) \cong D_4$;
3. $MN = W$;
4. $[M \cap N : K] = 2$.

4. 4-Torsion and $GL_2(\mathbb{Z}/4)$

Let W/\mathbb{Q} have Galois group $GL_2(\mathbb{Z}/4)$ and subextensions M/\mathbb{Q} and N/\mathbb{Q} as above. If $W = \mathbb{Q}(E[4])$ for some elliptic curve E, then $N = \mathbb{Q}(i, \sqrt{\Delta})$ and $M \cap N = \mathbb{Q}(\sqrt{\Delta})$, where Δ is the discriminant of E. See pages 80, 81 in [1]. Also, if $W = \mathbb{Q}(E[4])$, then $\mathbb{Q}(i)$ is the subfield of W fixed by $SL_2(\mathbb{Z}/4)$ ($MN \not\cong SL_2(\mathbb{Z}/4)$). See pages 69, 72 in [1]. To find a W/\mathbb{Q} that does not come from an elliptic curve, it suffices then to construct an appropriate S_4-extension M/\mathbb{Q}:

Lemma 4. Let M/\mathbb{Q} have Galois group S_4 and let D be the discriminant of M such that $\mathbb{Q}(\sqrt{D})$, the quadratic normal subfield of M, is not $\mathbb{Q}(i)$. If $M \not\subseteq \mathbb{Q}(E[4])$ for any elliptic curve E, then $W = M\mathbb{Q}(i, \sqrt{D})$ satisfies the three properties following Theorem 1.

Proof. This is clear because W has the correct Galois group over \mathbb{Q}, $\mathbb{Q}(i) \subseteq W$ is the fixed field of $SL_2(\mathbb{Z}/4)$, and W is uniquely determined by its subfields M and N. □
Given an elliptic curve E, we can determine the polynomial which generates the S_4-extension contained within $Q(E[4])$.

Theorem 5. Let $E : y^2 = x^3 + ax + b$ be an elliptic curve defined over Q with discriminant Δ such that $Gal(Q(E[4])/Q) \simeq GL_2(\mathbb{Z}/4)$. Then the unique S_4-subextension of $Q(E[4])$ is the splitting field of the following quartic:

$$B_E(x) = x^4 - 4\Delta x - 12a_4 \Delta.$$

Proof. See page 83 in [1] and page 9 in [4] (slightly different form). \hfill \IEEEQEDbox

Every S_4-extension M contains a unique S_3-subextension L. If M were to come from the 4-torsion of an elliptic curve E, then $L = Q(E[2])$ as in Section 2. Also, $Q(\sqrt{\Delta}) = M \cap N \subset L \subset M$.

If we replace E with another curve E' such that $E'[2] \simeq E[2]$ (as Galois modules), then Δ and a_4 may both change. In this case, $B_{E'} \neq B_E$, and the two polynomials may determine distinct S_4-extensions of Q. However, the S_3-field $L = Q(E[2]) = Q(E'[2])$ remains constant. Therefore, in order to construct an S_4-extension that does not come from an elliptic curve, we need to understand better the connection between S_4-extensions of Q that share a common S_3-subfield and the quartic polynomials that generate them.

5. S_4-Extensions and semi-invariants

In [4], invariants and semi-invariants of binary quartic forms are used to develop a better 2-descent for elliptic curves. Here we use them to show that the class of S_4-extensions properly contains those that come from the 4-torsion point fields of elliptic curves.

5.1. Definitions. Suppose K is a field, not having characteristic 2 or 3. To a quartic polynomial

$$g = ax^4 + bx^3 + cx^2 + dx + e \in K[x]$$

we associate a binary form $g(x, y) = ax^4 + bx^3y + cx^2y^2 + dxy^3 + ey^4$. $GL_2(K)$ acts on the set of these forms by

$$A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} : g(x, y) \mapsto g(\alpha x + \beta y, \gamma x + \delta y).$$

Two quartics g and h are considered *equivalent* under this action if they lie in the same $GL_2(K)$ orbit. In this case we write $g \sim h$.

We define the two basic invariants of g:

$$I = 12ae - 3bd + c^2 \quad J = 72ace + 9bcd - 27ad^2 - 27eb^2 - 2e^3.$$

I and J are invariants under the subgroup of matrices A such that $\det A = \pm 1$ (not all of $GL_2(K)$). They are thus invariant up to multiplication by fourth and sixth powers of $\det A$, respectively. We then think of I and J as being defined up to multiplication by fourth and sixth powers in K and note that two equivalent quartics have the same I and J. We will also follow [4] and define two semi-invariants of g:

$$p = 3b^2 - 8ac \quad r = b^3 + 8a^2d - 4abc,$$
which are invariant under action by a Borel subgroup in $GL_2(K)$, i.e., the subgroup of upper triangular matrices. Using I and J, we then define the resolvent polynomial

$$F(x) = x^3 - 3Ix + J.$$

This definition of F does not become problematic due to our notion that I and J are only defined up to multiplication by fourth and sixth powers, respectively. Suppose $F'(x) = x^3 + 3\alpha^4Ix + \alpha^6J$, where α lies in K. Then $F'(\alpha^2x) = \alpha^6F(x)$.

The splitting field of F is thus invariant under $GL_2(K)$. Finally, let ϕ be any root of F. This gives us a third semi-invariant of g,

$$z = \frac{4a\phi - p}{3}.$$

5.2. Classification. These invariants and semi-invariants then allow us to describe the field extensions associated with quartic polynomials. Suppose a quartic $g \in K[x]$ is irreducible with splitting field M/K and $\text{Gal}(M/K) \simeq S_4$. The splitting field of F, L, is the unique S_3-extension contained within M. By choosing ϕ to be any root of F, we also define a cubic extension $K(\phi)/K$. Additionally, M is the Galois closure of $K(\sqrt{z})$ and $N_{K(\phi)/K}(z) = r^2$.

Conversely, if we have any v in $K(\phi) - K$ with square norm over $K(\phi)$, then the Galois closure of $K(\sqrt{v})$ is an S_3-extension containing L. Ostensibly, $v = \lambda_2\phi^2 + \lambda_1\phi + \lambda_0$ ($\lambda_i \in \mathbb{Q}$), but if v is linear in ϕ, then the quartic generating this extension has the same I and J invariants as g.

In section 3 of [1] it is shown that the set of S_4-extensions M/K containing a given S_3-extension L is in one-to-one correspondence with nontrivial elements of $H^1(G_K, V_4)$, where G_K acts via the quotient $\text{Gal}(L/K)$ on V_4 as an automorphism group. This bijection is given by identifying $H^1(G_K, V_4)$ with $H = \ker(\text{Norm} : (K(\phi)^\times/(K(\phi)^\times)^2 \rightarrow K^\times/(K^\times)^2))$ in a way that is explicitly compatible with the construction of M via z. One then obtains, as a subset, a one-to-one correspondence between quartics g with invariants I and J up to $GL_2(K)$-equivalence and nonzero elements z of $K(\phi)$ that are linear in ϕ and have square norm, up to equivalence mod $(K(\phi)^\times)^2$.

Theorem 6. Let g and h be two quartics defined over K whose splitting fields, M_g and M_h, are S_4-extensions of K. Then,

$$M_g = M_h \iff g \sim h.$$

Proof. Suppose $g \sim h$. Then they share the same I and J and we have L, the splitting field of $F = x^3 - 3Ix + J$, contained in both M_g and M_h. Under the
correspondences above, \(g \) and \(h \) then generate the same \(V_4 \)-extension of \(L \); thus \(M_g = M_h \).

Now suppose \(M_g = M_h = M \). \(M \) contains a unique field \(L \) with Galois group \(S_3 \) over \(K \). Clearly, if \(g \) and \(h \) share the same \(I \) and \(J \), then the above correspondences indicate that they would generate the same extension only if they were equivalent. So suppose \(g \) and \(h \) have distinct \(I \)- and \(J \)-invariants. Then they correspond to different elements of \(H \) and thus distinct \(V_4 \)-extensions of \(L \). But this cannot be. Hence \(g \sim h \).

There is also a simple criterion to determine when two quartics are equivalent.

\textbf{Theorem 7} (Prop. 3.2(2) in [4]). Let \(g \) and \(h \) be two quartics having the same invariants \(I \), \(J \) and semi-invariants \(z_g \), \(z_h \). Then,

\[g \sim h \iff z_g z_h \in (K(\phi)^\times)^2. \]

This is precisely what we need in order to prove that a particular \(S_4 \)-extension \(M/\mathbb{Q} \) cannot sit inside \(\mathbb{Q}(E[4]) \) for any \(E \).

\textsc{6. The Result}

\textbf{Theorem 8}. Let \(g \) be any quartic polynomial defined over \(\mathbb{Q} \) such that its splitting field \(M \) has \(\text{Gal}(M/\mathbb{Q}) \cong S_4 \). Let \(L \) be the unique \(S_3 \)-subextension, choose \(\phi \), and let \(g \) have semi-invariants \(p \) and \(a \).

\(M \subset \mathbb{Q}(E[4]) \) for some elliptic curve \(E \implies \phi(4a\phi - p) \in (K(\phi)^\times)^2 \).

\textbf{Proof}. Let \(z_E \), \(a_E \) and \(p_E \) be the semi-invariants associated to \(B_E \), and let \(z \) be the \(z \)-semi-invariant of \(g \). Suppose \(M \) is contained within \(\mathbb{Q}(E[4]) \) for some elliptic curve \(E \). Then \(g \sim B_E \). In particular, \(g \) and \(B_E \) share the same \(I \) and \(J \) (a more stringent criterion than \(\mathbb{Q}(E[2]) = L \)), and \(z_E \) is defined to be linear in \(\phi \). \(I \) and \(J \) determine \(F \) (i.e. \(\phi \)), and hence \(z_E = \frac{4a_E p_E - p_E}{3} \). \(B_E \) is monic, so \(a_E = 0 \). Also \(B_E \) has no quadratic or cubic terms, so \(p_E \) is zero. Thus \(z_E = \frac{4p_E}{3} \).

Now we have \(zz_E = \frac{4}{3}(\phi)(4a\phi - p) \). By Theorem 7 this is a square and we are done.

Tables of quartic extensions of \(\mathbb{Q} \) have been constructed by [3], ordered by absolute value of their discriminants (and signature), up to \(10^7 \). There are 1,635,308 \(S_4 \)-fields in these tables, each given by a defining polynomial. Of these polynomials, all but 6,755 have \(\phi(4a\phi - p) \notin (K(\phi)^\times)^2 \) and so do not come from the 4-torsion of
any elliptic curve. In Table 1 we list all 18 such extensions with discriminant less than 1000 in absolute value. Of these, only 3 could (and do) lie inside the 4-torsion of an elliptic curve.

We thus have many S_4-extensions of \mathbb{Q} which do not arise from the 4-torsion of any elliptic curve as well as an easy computation which usually tells us whether a given quartic generates such an extension. We close with a few remarks.

7. Concluding remarks

7.1. The converse of Theorem 8 is not true; given a quartic g for which $\phi(4a\phi - p)$ is a square and $\text{Gal}(M_g/\mathbb{Q}) \cong S_4$, there is not necessarily an elliptic curve $E : y^2 = x^3 + ax + b$ whose 4-torsion field contains M_g.

For example, consider $g = x^4 + 3x^2 - 2x + 1$, with discriminant 1264, $I = 21$, $J = 54$ and $p = -24$. It is the quartic of smallest discriminant for which $\phi(4a\phi - p)$ is square but $p \neq 0$. Let α be a root of g, and suppose there is an $h = x^4 - 4\Delta x - 12a_4\Delta$ with root $\beta = b_3\alpha^3 + b_2\alpha^2 + b_1\alpha + b_0$ such that $\mathbb{Q}(\alpha) = \mathbb{Q}(\beta)$. β must be in the kernel of the map $\text{tr}: \mathbb{Q}(\alpha) \rightarrow \mathbb{Q}$ given by $\alpha \mapsto \text{trace}(\alpha)$, because the x^3-coefficient of h is $\text{tr}(\beta)$. In fact, $\ker(\text{tr}) = \langle c_1, c_2, c_3 \rangle$ where

$$c_1 = 2\alpha^3 + 5\alpha - 3, \quad c_2 = 2\alpha^3 + 4\alpha - 3, \quad c_3 = 21\alpha^3 - \alpha^2 + 48\alpha - 33.$$

So $\beta = uc_1 + vc_2 + wc_3$ for some rationals u, v and w.

Now, $\text{tr}(\beta^2) - \text{tr}(\beta^2)$ is twice the coefficient of x^2 in h. But $\text{tr}(\beta^2)$ and $\text{tr}(c_ic_j)$ for $i \neq j$ are all 0 whilst $\text{tr}(c_1^2) = -2$, $\text{tr}(c_2^2) = -4$ and $\text{tr}(c_3^2) = 158$. Hence, h has zero x^2-coefficient if and only if

$$u^2 + 2v^2 - 79w^2 = 0.$$
However, this quadratic form does not vanish for any nontrivial rationals \(u, v \) and \(w \). So there is no elliptic curve \(E : y^2 = x^3 + ax + b \) whose 4-torsion field contains \(M_y \). (We would like to thank the referee for suggesting this argument.)

7.2. When a quartic polynomial does correspond to an elliptic curve, it can be difficult to find the appropriate \(E \). Since \(\Delta \) appears in the coefficients of \(B_E \) (giving us \(I = -3^2\Delta a_4 \) and \(J = -2^43^3\Delta^2 \)) and the polynomials given in the tables have minimized coefficients (giving us relatively small \(I \) and \(J \)), one cannot usually read the elliptic curve from the coefficients of the original quartic.

For example, the first extension listed, given by \(x^4 - x + 1 \), does not correspond to the 4-torsion field of the unique elliptic curve of conductor 229. Instead, the elliptic curve \(E : y^2 = x^3 - 395712x - 906180048 \) of conductor \(2^229^2 \) has \(B_E \sim x^4 - x + 1 \). The \(S_4 \)-extension coming from the curve of conductor 229 occurs much further down the list.

To find \(E \), we employed the following method: Since \(I \) and \(J \) are determined only up to 4th and 6th powers respectively, we look for an \(E \) defined by the minimal polynomial of a nonmaximal order of \(L \) of conductor divisible by \(\text{disc}(g) \) (and possibly other primes). Then \(\Delta = k^2(\text{disc}(g))^3 \) and the \(a_4 \) from \(E \) is often divisible by \(\text{disc}(g) \). We can hope in this way to obtain an \(E \) such that \(B_E \) has the correct \(I \) and \(J \).

This procedure was also successful for the other two quartics on the short list above, but it does not tell us whether or not such a curve exists. The order corresponding to \(E \) could lie arbitrarily deep in \(O_L \) or not be there at all, as is the case for the quartic in Remark 7.1.

7.3. If \(g \) does come from the 4-torsion of some elliptic curve, it is never the case that \(E \) is given by \(y^2 = F \), the resolvent polynomial of \(g \). This follows from Prop. 4.3 in [4].

7.4. The \(I \) and \(J \) invariants also determine isomorphism classes of 4-torsion modules. If \(E \) and \(E' \) are elliptic curves such that \(\text{Gal}(\mathbb{Q}(E[4]) / \mathbb{Q}) \simeq \text{Gal}(\mathbb{Q}(E'[4]) / \mathbb{Q}) \simeq GL_2(\mathbb{Z}/4) \) and \(B_E \) and \(B_{E'} \) share \(I \) and \(J \) invariants, then \(B_E \sim B_{E'} \) and so they generate the same \(S_4 \)-extension. \(I \) and \(J \) also determine the discriminant of this extension (\(D \) in Section 3) up to a twelfth power. In particular, the fourth roots of the two elliptic curves’ discriminants are the same; both curves generate the same \(D_4 \)-extension. Thus, the two 4-torsion fields of \(E \) and \(E' \) are equal and they define the same mod 4 Galois representation.

References

Department of Mathematics, University of Wisconsin, 480 Lincoln Drive, Madison, Wisconsin 53706-1388

E-mail address: holden@math.wisc.edu