Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Blaschke representation of functions on the circle


Authors: Elias Wegert and Lothar von Wolfersdorf
Journal: Proc. Amer. Math. Soc. 136 (2008), 161-170
MSC (2000): Primary 30E25; Secondary 30D50, 81U40
DOI: https://doi.org/10.1090/S0002-9939-07-08936-8
Published electronically: September 25, 2007
MathSciNet review: 2350401
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that every unimodularly bounded measurable function on the complex unit circle admits a representation

$\displaystyle f=\frac{f_++f_-}{1+\overline{f}_-f_+}, $

where $ f_+$ and $ f_-$ extend holomorphically into the interior and the exterior of the circle, respectively, $ f_-$ vanishes at infinity, and both functions are unimodularly bounded. The representation is unique if $ \Vert f\Vert _\infty<1$.


References [Enhancements On Off] (What's this?)

  • 1. Garnett, J.B.: Bounded Analytic Functions. Academic Press, 1981. MR 628971 (83g:30037)
  • 2. Koosis, P.: Introduction to $ H_p$ spaces (2nd edition). Cambridge University Press, 1998. MR 565451 (81c:30062)
  • 3. Litvinchuk, G.M., and I.M.Spitkovsky: Factorization of Measurable Matrix Functions. Birkhäuser, Basel, 1987. MR 1015716 (90g:47030)
  • 4. Mityushev, V.V., and S.V. Rogosin: Constructive Methods for Linear and Nonlinear Boundary Value Problems for Analytic Functions. Chapman and Hall/CRC Press, 2000. MR 1739063 (2001d:30075)
  • 5. Spitkovsky, I.M.: On the theory of the generalized Riemann boundary value problem in $ L_p$ spaces (Russian). Ukrain. Mat. J. 31, 1 (1979) 63-73. MR 523157 (81e:30053)
  • 6. Sylvester, J., and D.P.Winebrenner: Linear and nonlinear inverse scattering. SIAM J. Appl. Math. 59, No.2, 669-699 (1999). MR 1654391 (2000a:34021)
  • 7. Triebel, H.: The Structure of Functions. Birkhäuser, 2001. MR 1851996 (2002k:46087)
  • 8. Wegert, E., Khimshiashvili, G., Spitkovsky, I.: Nonlinear transmission problems. Mem. Differ. Equ. Math. Phys. 12, 223-230 (1997). MR 1636880 (99g:47058)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 30E25, 30D50, 81U40

Retrieve articles in all journals with MSC (2000): 30E25, 30D50, 81U40


Additional Information

Elias Wegert
Affiliation: Institute of Applied Analysis, TU Bergakademie Freiberg, 09596 Freiberg, Germany
Email: wegert@math.tu-freiberg.de

Lothar von Wolfersdorf
Affiliation: Institute of Applied Analysis, TU Bergakademie Freiberg, 09596 Freiberg, Germany
Email: wolfersd@math.tu-freiberg.de

DOI: https://doi.org/10.1090/S0002-9939-07-08936-8
Received by editor(s): June 26, 2006
Received by editor(s) in revised form: September 22, 2006
Published electronically: September 25, 2007
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society