SUBMANIFOLDS OF REAL ALGEBRAIC VARIETIES

W. KUCHARZ

(Communicated by Paul Goerss)

ABSTRACT. By the Nash-Tognoli theorem, each compact smooth manifold M is diffeomorphic to a nonsingular real algebraic set, called an algebraic model of M. We construct algebraic models X of M with controlled behavior of the group of cohomology classes represented by algebraic subsets of X.

1. INTRODUCTION

A compact smooth (of class C^∞) manifold is said to be a boundary if it is diffeomorphic to the boundary of a compact smooth manifold with boundary. By convention, the empty manifold is a boundary. The goal of the present paper is to demonstrate that boundaries play a surprisingly interesting role in real algebraic geometry (cf. [4, Theorem 1.4] for the first result of this kind).

All real algebraic varieties in this paper are assumed to be affine (that is, isomorphic to an algebraic subset of \mathbb{R}^n for some n). For background material on real algebraic geometry the reader may consult [2]. Every real algebraic variety carries also the Euclidean topology, induced by the usual metric topology on \mathbb{R}. Unless explicitly stated otherwise, all topological notions related to real algebraic varieties will refer to the Euclidean topology.

Given a compact nonsingular real algebraic variety X, we denote by $H^\text{alg}_d(X, \mathbb{Z}/2)$ the subgroup of $H_d(X, \mathbb{Z}/2)$ of homology classes represented by d-dimensional algebraic subsets of X; cf. [1, 2, 3, 5]. For technical reasons it is more convenient to work with cohomology groups. We set

$$H^\text{c,alg}_d(X, \mathbb{Z}/2) := D_X^{-1}(H^\text{alg}_d(X, \mathbb{Z}/2)),$$

where $c + d = \dim X$ and $D_X : H^c(X, \mathbb{Z}/2) \to H_d(X, \mathbb{Z}/2)$ is the Poincaré duality isomorphism. The groups $H^\text{c,alg}_d(-, \mathbb{Z}/2)$ are of fundamental interest in real algebraic geometry and will also be in the center of our attention here. Their basic properties and applications are surveyed in [3].

Let M be a compact smooth manifold of dimension m. Denote by $[M]$ the fundamental class of M in $H_m(M, \mathbb{Z}/2)$. For any smooth d-dimensional submanifold N of M (submanifolds are always assumed to be closed subsets), we let $[N]_M$ denote the homology class in $H_d(M, \mathbb{Z}/2)$ represented by N. We set $[N]_M = 0$ if N is empty.

Received by the editors September 10, 2005 and, in revised form, September 28, 2006.
2000 Mathematics Subject Classification. Primary 14P05, 14C25.

©2007 American Mathematical Society
Given a finite collection \mathcal{F} of smooth submanifolds of M, we define

$$G_k(\mathcal{F}) := \{ u \in H^k(M, \mathbb{Z}/2) \mid \langle u, [N]_M \rangle = 0 \text{ for all } N \in \mathcal{F} \text{ with } \dim N = k \}.$$

Here, as usual, $\langle \cdot, \cdot \rangle$ stands for scalar product (Kronecker index). If there is no k-dimensional submanifold in \mathcal{F}, then $G_k(\mathcal{F}) := H^k(M, \mathbb{Z}/2)$. Clearly, $G_k(\mathcal{F})$ is a subgroup of $H^k(M, \mathbb{Z}/2)$.

Recall that \mathcal{F} is said to be in general position if for each point x in M, the collection $\mathcal{F}_x = \{ N \in \mathcal{F} \mid x \in N \}$ is either empty or otherwise codim$(\bigcap_{N \in \mathcal{F}_x} T_x N) = \sum_{N \in \mathcal{F}_x} \text{codim} T_x N$, where $T_x N$ is regarded as a subspace of the tangent space $T_x M$.

If \mathcal{F} is in general position and N_1, \ldots, N_s are in \mathcal{F}, then $N_1 \cap \ldots \cap N_s$ is a smooth submanifold of M.

Definition 1.1. A finite collection \mathcal{F} of smooth submanifolds of M is said to be admissible if:

(i) $\dim N < \dim M$ for all N in \mathcal{F};
(ii) \mathcal{F} is in general position;
(iii) if N_1, \ldots, N_s are in \mathcal{F}, then $N_1 \cap \ldots \cap N_s$ is in \mathcal{F};
(iv) each submanifold in \mathcal{F} has trivial normal vector bundle.

If M' is another smooth manifold and if $\varphi : M' \to M$ is a smooth diffeomorphism, then

$$\varphi^* \mathcal{F} := \{ \varphi^{-1}(N) \mid N \in \mathcal{F} \}$$

is a collection of smooth submanifolds of M'. The collection $\varphi^* \mathcal{F}$ is admissible, provided \mathcal{F} is admissible.

Theorem 1.2. Let X be a compact nonsingular real algebraic variety and let \mathcal{F} be an admissible collection of smooth submanifolds of X. If

$$H^k_{\text{alg}}(X, \mathbb{Z}/2) \subseteq G_k(\mathcal{F})$$

for some nonnegative integer k, then each k-dimensional manifold in \mathcal{F} is a boundary.

Theorem 1.2 is easy to prove. Its purpose is to provide motivation for our main result, Theorem 1.3, below. By Tognoli’s theorem [14] (cf. also [2, Theorem 14.1.10] and, for a weaker but influential result, [12]), each compact smooth manifold M is diffeomorphic to a nonsingular real algebraic variety, called an algebraic model of M. Constructing algebraic models satisfying some additional desirable conditions is an interesting and active area of research; cf. [1, 2, 3, 8, 9].

Theorem 1.3. Let M be a compact smooth manifold and let \mathcal{F} be an admissible collection of smooth submanifolds of M. If each manifold in \mathcal{F} is a boundary, then there exist an irreducible algebraic model X of M and a smooth diffeomorphism $\varphi : X \to M$ such that

$$H^k_{\text{alg}}(X, \mathbb{Z}/2) \subseteq G^k(\varphi^* \mathcal{F})$$

for all nonnegative integers k.

Theorem 1.3 is useful for constructing examples such that $H^k_{\text{alg}}(-, \mathbb{Z}/2) \neq H^k(-, \mathbb{Z}/2)$.
Example 1.4. The n-fold product $T^n = S^1 \times \cdots \times S^1$ of the unit circle S^1 has an algebraic model X with $H^k_{alg}(X, \mathbb{Z}/2) \neq H^k(X, \mathbb{Z}/2)$ for $1 \leq k \leq n - 1$. Indeed, suppose $n \geq 2$, since for $n = 1$ the assertion is void. Choose $n - 1$ distinct points p_1, \ldots, p_{n-1} in S^1 and set

$$N_i = \{(x_1, \ldots, x_n) \in T^n \mid x_1 = \cdots = x_i = p_i\}$$

for $1 \leq i \leq n - 1$. Then $\mathcal{F} := \{N_1, \ldots, N_{n-1}\}$ is an admissible collection of smooth submanifolds of T^n. Moreover, $\text{codim}_{T^n} N = i$ and N_i is a boundary for $1 \leq i \leq n - 1$. Hence the assertion follows from Theorem 1.3.

Theorems 1.2 and 1.3 will be proved in the next section.

2. Proofs

As usual, the ith Stiefel-Whitney class of a smooth manifold M will be denoted by $w_i(M)$. Given a smooth submanifold N of M, we set

Henceforth, both the homology class $[N]_M$ and cohomology class $[N]^M$ will be used. Basic properties of the products $\langle \cdot, \cdot \rangle, \cap, \cup$ familiar from algebraic topology [6] will be used without further explanation.

Lemma 2.1. Let M be a compact smooth manifold and let N be a k-dimensional smooth submanifold of M. If the normal vector bundle of N in M is trivial, then the following conditions are equivalent:

(a) N is a boundary,

(b) $\langle w_{i_1}(M) \cup \ldots \cup w_{i_r}(M), [N]_M \rangle = 0$ for all nonnegative integers i_1, \ldots, i_r with $i_1 + \cdots + i_r = k$,

(c) $\langle w_{i_1}(M) \cup \ldots \cup w_{i_r}(M) \cup [N]^M, [M] \rangle = 0$ for all nonnegative integers i_1, \ldots, i_r with $i_1 + \cdots + i_r = k$.

Proof. Let $e : N \hookrightarrow M$ be the inclusion map. Then

Setting $w = w_{i_1}(M) \cup \ldots \cup w_{i_r}(M)$, we have

$$\langle w \cup [N]^M, [M] \rangle = \langle w, [N]^M \cap [M] \rangle = \langle w, [N]_M \rangle = \langle w, e_*([N]) \rangle = \langle e^*(w), [N] \rangle = \langle e^*(w_{i_1}(M)) \cup \ldots \cup e^*(w_{i_r}(M)), [N] \rangle = \langle w_{i_1}(N) \cup \ldots \cup w_{i_r}(N), [N] \rangle,$$

where the last equality holds since the triviality of the normal vector bundle of N implies that $e^*(w_i(M)) = w_i(N)$ for all $i \geq 0$. The proof is complete since, by [13, Théorèmes IV.3, IV.10], N is a boundary if and only if $\langle w_{i_1}(N) \cup \ldots \cup w_{i_r}(N), [N] \rangle = 0$ for all nonnegative integers i_1, \ldots, i_r with $i_1 + \cdots + i_r = k$. □

Proof of Theorem 1.2. Every cup product $w_{i_1}(X) \cup \ldots \cup w_{i_r}(X)$ is in $H^k_{alg}(X, \mathbb{Z}/2)$, where $k = i_1 + \cdots + i_r$; cf. [1, 2, 3, 5]. By assumption, for any k-dimensional submanifold N in \mathcal{F}, we have

$$\langle w_{i_1}(X) \cup \ldots \cup w_{i_r}(X), [N]_X \rangle = 0,$$

which completes the proof in view of Lemma 2.1. □
The proof of Theorem 1.3 requires further preparations. Given a smooth manifold P, let $\mathfrak{N}_s(P)$ denote the unoriented bordism group of P; cf. [7]. The following fundamental result will play a crucial role.

Theorem 2.2. Let P be a smooth manifold. Two smooth maps $f : M \to P$ and $g : N \to P$, where M and N are compact smooth manifolds of dimension d, represent the same bordism class in $\mathfrak{N}_s(P)$ if and only if for every nonnegative integer q and every cohomology class v in $H^q(P,\mathbb{Z}/2)$, one has

$$\langle w_{i_1}(M) \cup \ldots \cup w_{i_r}(M) \cup f^*(v), [M] \rangle = \langle w_{i_1}(N) \cup \ldots \cup w_{i_r}(N) \cup g^*(v), [N] \rangle$$

for all nonnegative integers i_1, \ldots, i_r with $i_1 + \cdots + i_r = d - q$.

Reference for the proof. [7, (17.3)].

If W is a nonsingular real algebraic variety, then a bordism class in $\mathfrak{N}_s(W)$ is said to be algebraic if it can be represented by a regular map $h : Y \to W$, where Y is a compact nonsingular real algebraic variety.

We will also make use of a certain construction from real algebraic geometry. Let X be a compact nonsingular real algebraic variety. Define $\text{Alg}^l(X)$ to be the subset of $H^l(X,\mathbb{Z}/2)$ that consists of all elements v for which there exist a compact irreducible nonsingular real algebraic variety T (depending on v), two points t_0 and t_1 in T, and a cohomology class z in $H^{l+1}(X \times T,\mathbb{Z}/2)$ such that

$$v = i_t^*(z) - i_{t_0}^*(z).$$

Here given t in T, we let $i_t : X \to X \times T$ denote the map defined by $i_t(x) = (x, t)$ for all x in X. For properties and an alternative definition of $\text{Alg}^l(-)$, the reader may refer to [10, 11]. Below we will need the following facts. The set $\text{Alg}^l(X)$ is a subgroup of $H^l_{\text{alg}}(X,\mathbb{Z}/2)$, which has the expected functorial property: if $f : X \to Y$ is a regular map between compact nonsingular real algebraic varieties, then the induced homomorphism $f^* : H^l(Y,\mathbb{Z}/2) \to H^l(X,\mathbb{Z}/2)$ satisfies

$$f^*(\text{Alg}^l(Y)) \subseteq \text{Alg}^l(X);$$

cf. [1, p. 114].

Proposition 2.3. Let X be a compact nonsingular real algebraic variety. If u is in $H^k_{\text{alg}}(X,\mathbb{Z}/2)$ and v is in $\text{Alg}^l(X)$, where $k + l = \dim X$, then $\langle u \cup v, [X] \rangle = 0$.

References for the proof. [10, Theorem 2.1] (cf. also [11, Theorem 4.4]).

Example 2.4. Given a positive integer l let B^l be an irreducible nonsingular real algebraic variety with precisely two connected components B_0^l and B_1^l, each diffeomorphic to the unit l-sphere S^l (for example $B^l = \{(x_0, \ldots, x_l) \in \mathbb{R}^{l+1} \mid x_0^4 - 4x_0^2 + 1 + x_1^2 + \cdots + x_l^2 = 0\}$). Let $B = B^l_1 \times \cdots \times B^{l_r}$ and $B_0 = B^l_0 \times \cdots \times B_0^{l_r}$. Then

$$H^q(B_0,\mathbb{Z}/2) = \delta^*(H^q(B,\mathbb{Z}/2)) = \delta^*(\text{Alg}^q(B))$$

for all $q \geq 0$, where $\delta : B_0 \hookrightarrow B$ is the inclusion map. This assertion is a minor generalization of [11, Example 4.5].

For convenience we introduce the following notation. For any finite collection \mathcal{F} of smooth submanifolds of a compact smooth manifold M, denote by $A^l(\mathcal{F})$ the subgroup of $H^l(M,\mathbb{Z}/2)$ generated by $\{[N]^M \mid N \in \mathcal{F}, \text{codim}_MN = l\}$. If $k + l = \dim M$, then

$$G^k(\mathcal{F}) = \{u \in H^k(M,\mathbb{Z}/2) \mid \langle u \cup v, [M] \rangle = 0 \text{ for all } v \in A^l(\mathcal{F})\}.$$
This follows immediately from the equality $\langle u \cup v, [M] \rangle = \langle u, D_M(v) \rangle$.

Proof of Theorem 1.3. Observe that $G^0(F)$ contains the subgroup of $H^0(M, \mathbb{Z}/2)$ generated by 1. On the other hand, if Y is a compact irreducible nonsingular real algebraic variety, then $H^0_{\text{alg}}(Y, \mathbb{Z}/2)$ is the subgroup of $H^0(Y, \mathbb{Z}/2)$ generated by 1. Hence, without loss of generality, we can enlarge the collection F by adding to it finitely many 0-dimensional submanifolds of M, each consisting of an even number of points. Thus we can assume that F has the following property: if M_1 and M_2 are distinct connected components of M, then $\{x_1, x_2\}$ is in F for some points x_1 in M_1 and x_2 in M_2.

Let $F = \{N_1, \ldots, N_s\}$ and $l_i = \text{codim}_M N_i$ for $1 \leq i \leq s$. Note that $l_i \geq 1$. We will use notation introduced in Example 2.4. There is a smooth map $f_i : M \rightarrow B^{l_i}$ such that $f_i(M) \subseteq B^{l_i}_0$ and $f_i^*(H^0(B^{l_i}, \mathbb{Z}/2))$ is the subgroup of $H^0(M, \mathbb{Z}/2)$ generated by $[N_i]^M$. This assertion follows from a well-known fact that if the normal vector bundle of a smooth submanifold N of M is trivial and $\text{codim}_M N = l \geq 1$, then one can find a smooth map $h : M \rightarrow S^l$ with $h^*(\lambda) = [N]^M$, where λ is the unique generator of $H^0(S^l, \mathbb{Z}/2) \cong \mathbb{Z}/2$; cf. [13, Théorème II.2]. Setting $f = (f_1, \ldots, f_s) : M \rightarrow B = B^{l_1} \times \cdots \times B^{l_s}$, we have

$$f^*(H^q(B, \mathbb{Z}/2)) = A^q(F) \quad \text{for all } q \geq 1. \quad (1)$$

Let $c : M \rightarrow B$ be a constant map, whose single value is a point in B_0. Since M has an algebraic model, the bordism class of c in $\mathcal{R}_s(B)$ is algebraic. We claim that for every nonnegative integer q and every cohomology class b in $H^q(B, \mathbb{Z}/2)$,

$$\langle w_{i_1}(M) \cup \ldots \cup w_{i_r}(M) \cup f^*(b), [M] \rangle = \langle w_{i_1}(M) \cup \ldots \cup w_{i_r}(M) \cup c^*(b), [M] \rangle$$

for all nonnegative integers i_1, \ldots, i_r with $i_1 + \cdots + i_r = \text{dim } M - q$. The claim is obvious if $q = 0$. For $q \geq 1$ condition (2) is equivalent to

$$\langle w_{i_1}(M) \cup \ldots \cup w_{i_r}(M) \cup f^*(b), [M] \rangle = 0.$$

The last equality holds in view of (1) and Lemma 2.1, and hence (2) is proved. It follows from (2) and Theorem 2.2 that f and c represent the same bordism class in $\mathcal{R}_s(B)$. In particular, the bordism class of f in $\mathcal{R}_s(B)$ is algebraic. By [1, Theorem 2.8.4], there exist an algebraic model X of M, a smooth diffeomorphism $\varphi : X \rightarrow M$, and a regular map $g : X \rightarrow B$ such that g is homotopic to $f \circ \varphi$. It remains to show that X and φ have the properties stated in the theorem. This can be done as follows. Since g is homotopic to $f \circ \varphi$, we get $\varphi^* \circ f^* = (f \circ \varphi)^* = g^*$ in cohomology, and hence for all $q \geq 0$,

$$\varphi^*(f^*(H^q(B, \mathbb{Z}/2))) = g^*(H^q(B, \mathbb{Z}/2)) = g^*(\text{Alg}^q(B)), \quad (3)$$

where the last equality follows from the inclusion $g(X) \subseteq B_0$ and Example 2.4. We also have

$$g^*(\text{Alg}^q(B)) \subseteq \text{Alg}^q(X), \quad (4)$$

the map $g : X \rightarrow B$ being regular. Conditions (1), (3), and (4) combined yield

$$\varphi^*(A^q(F)) \subseteq \text{Alg}^q(X) \quad \text{for all } q \geq 1. \quad (5)$$

Let k and l be integers satisfying $k \geq 0$, $l \geq 0$, and $k + l = m$, where $m = \text{dim } M = \text{dim } X$. Since $\varphi^*(A^l(F)) = A^l(\varphi^* F)$ and

$$G^k(\varphi^* F) = \{ u \in H^k(X, \mathbb{Z}/2) \mid \langle u \cup v, [X] \rangle = 0 \text{ for all } v \in A^l(\varphi^* F) \},$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
it follows from (5) and Proposition 2.3 that
\[H^k_{\text{alg}}(X, \mathbb{Z}/2) \subseteq G^k(\varphi^*\mathcal{F}) \]
for \(0 \leq k \leq m - 1 \). In fact (6) holds for all \(k \geq 0 \), the equality \(G^k(\varphi^*\mathcal{F}) = H^k(X, \mathbb{Z}/2) \) being automatically satisfied if \(k \geq m \).

In order to complete the proof, we need to demonstrate that \(X \) is irreducible. This is obvious if \(M \) is connected. Suppose then that \(M \) is disconnected and \(X \) is reducible. Let \(X_1 \) and \(X_2 \) be distinct irreducible components of \(X \). There are points \(p_1 \) in \(X_1 \) and \(p_2 \) in \(X_2 \) such that \(P = \{p_1, p_2\} \) is in \(\varphi^*\mathcal{F} \) (see the beginning of the proof). In particular, \([P]^X \) belongs to \(A^m(\varphi^*\mathcal{F}) = \varphi^*(A^m(\mathcal{F})) \), which in view of (5) implies that \([P]^X \) is in \(\text{Alg}^m(X) \). If \(e : X_1 \hookrightarrow X \) is the inclusion map, then \(e^*(\text{Alg}^m(X)) \subseteq \text{Alg}^m(X_1) \), and hence \(e^*([P]^X) = \{[p_1]\}^X_1 \) is in \(\text{Alg}^m(X_1) \). However, \(\langle \{[p_1]\}^X_1, [X_1] \rangle = 1 \), which contradicts Proposition 2.3. Thus \(X \) is irreducible, as required. \(\square \)

REFERENCES

Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131-1141

E-mail address: kucharz@math.unm.edu