Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Submanifolds of real algebraic varieties


Author: W. Kucharz
Journal: Proc. Amer. Math. Soc. 136 (2008), 55-60
MSC (2000): Primary 14P05, 14C25
DOI: https://doi.org/10.1090/S0002-9939-07-08944-7
Published electronically: September 25, 2007
MathSciNet review: 2350388
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: By the Nash-Tognoli theorem, each compact smooth manifold $ M$ is diffeomorphic to a nonsingular real algebraic set, called an algebraic model of $ M$. We construct algebraic models $ X$ of $ M$ with controlled behavior of the group of cohomology classes represented by algebraic subsets of $ X$.


References [Enhancements On Off] (What's this?)

  • 1. S. Akbulut and H. King, Topology of Real Algebraic Sets, Math. Sci. Research Institute Publ. 25, Springer, 1992. MR 1225577 (94m:57001)
  • 2. J. Bochnak, M. Coste and M.-F. Roy, Real Algebraic Geometry, Ergebnisse der Math. und ihrer Grenzgeb. Folge (3), Vol. 36, Springer, 1998. MR 1659509 (2000a:14067)
  • 3. J. Bochnak and W. Kucharz, On homology classes represented by real algebraic varieties, Banach Center Publications 44 (1998), 21-35. MR 1677394 (2000b:14080)
  • 4. J. Bochnak and W. Kucharz, On approximation of smooth submanifolds by nonsingular real algebraic subvarieties, Ann. Sci. Ec. Norm. Sup. 36 (2003), 685-690. MR 2032984 (2004j:14063)
  • 5. A. Borel and A. Haefliger, La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. France 89 (1961), 461-513. MR 0149503 (26:6990)
  • 6. G. Bredon, Topology and Geometry, New York, Berlin, Heidelberg, Springer, 1997. MR 1700700 (2000b:55001)
  • 7. P. Conner, Differentiable Periodic Maps, Lecture Notes in Math. Vol. 738, Springer, 1979. MR 548463 (81f:57018)
  • 8. J. Huisman and F. Mangolte, Every orientable Seifert $ 3$-manifold is a real component of a uniruled algebraic variety, Topology 44 (2005), 63-71. MR 2104001 (2005h:14139)
  • 9. J. Kollár, The topology of real and complex algebraic varieties, Taniguchi Conference on Mathematics, Nara 1998, Advanced Studies in Pure Mathematics, Vol. 31, Mathematical Society of Japan, Tokyo, 2001, pp. 127-145. MR 1865090 (2003a:14033)
  • 10. W. Kucharz, Algebraic equivalence and homology classes of algebraic cycles, Math. Nachr. 180 (1996), 135-140. MR 1397672 (97e:14009)
  • 11. W. Kucharz, Algebraic cycles and algebraic models of smooth manifolds, J. Algebraic Geometry 11 (2002), 101-127. MR 1865915 (2002j:14065)
  • 12. J. Nash, Real algebraic manifolds, Ann. of Math. 56 (1952), 405-421. MR 0050928 (14:403b)
  • 13. R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86. MR 0061823 (15:890a)
  • 14. A. Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa, Sci. Fis. Mat. 27 (3) (1973), 167-185. MR 0396571 (53:434)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14P05, 14C25

Retrieve articles in all journals with MSC (2000): 14P05, 14C25


Additional Information

W. Kucharz
Affiliation: Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131-1141
Email: kucharz@math.unm.edu

DOI: https://doi.org/10.1090/S0002-9939-07-08944-7
Received by editor(s): September 10, 2005
Received by editor(s) in revised form: September 28, 2006
Published electronically: September 25, 2007
Communicated by: Paul Goerss
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society