Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Uniform periodic point growth in entropy rank one


Authors: Richard Miles and Thomas Ward
Journal: Proc. Amer. Math. Soc. 136 (2008), 359-365
MSC (2000): Primary 22D40, 37A15, 37A35
DOI: https://doi.org/10.1090/S0002-9939-07-09018-1
Published electronically: September 7, 2007
MathSciNet review: 2350424
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that algebraic dynamical systems with entropy rank one have uniformly exponentially many periodic points in all directions.


References [Enhancements On Off] (What's this?)

  • 1. A. Baker. Transcendental number theory, Cambridge University Press, London, 1975. MR 0422171 (54:10163)
  • 2. P. E. Blanksby and H. L. Montgomery, Algebraic integers near the unit circle, Acta Arith., 18 (1971), 355-369. MR 0296021 (45:5082)
  • 3. Mike Boyle and Douglas Lind, Expansive subdynamics, Trans. Amer. Math. Soc. 349 (1997), no. 1, 55-102. MR 1355295 (97d:58115)
  • 4. Vijay Chothi, Graham Everest, and Thomas Ward, $ S$-integer dynamical systems: Periodic points, J. Reine Angew. Math. 489 (1997), 99-132. MR 1461206 (99b:11089)
  • 5. Danijela Damjanovic and Anatole Katok, Local rigidity of partially hyperbolic actions of  $ \mathbb{Z}^k$ and  $ \mathbb{R}^k$, $ k\ge2$. I. KAM method and actions on the torus, Preprint.
  • 6. Manfred Einsiedler, Douglas Lind, Richard Miles, and Thomas Ward, Expansive subdynamics for algebraic $ {\mathbb{Z}}\sp d$-actions, Ergodic Theory Dynam. Systems 21 (2001), no. 6, 1695-1729. MR 1869066 (2004c:37033)
  • 7. Manfred Einsiedler and Douglas Lind, Algebraic $ \mathbb{Z}\sp d$-actions of entropy rank one, Trans. Amer. Math. Soc. 356 (2004), no. 5, 1799-1831. MR 2031042 (2005a:37009)
  • 8. Graham Everest and Thomas Ward, Heights of polynomials and entropy in algebraic dynamics, Springer-Verlag London, Ltd., London, 1999. MR 1700272 (2000e:11087)
  • 9. Graham Everest, Richard Miles, Shaun Stevens and Thomas Ward, Orbit-counting in non-hyperbolic dynamical systems, J. Reine Angew. Math., 608 (2007), 155-182.
  • 10. A. O. Gel$ '$fond, Transcendental and algebraic numbers, Dover Publications, Inc., New York 1960. Translated from the first Russian edition by Leo F. Boron. MR 0111736 (22:2598)
  • 11. Bruce Kitchens and Klaus Schmidt, Automorphisms of compact groups, Ergodic Theory Dynam. Systems 9 (1989), no. 4, 691-735. MR 1036904 (91g:22008)
  • 12. François Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 7, A561-A563. MR 0512106 (80b:28030)
  • 13. D. H. Lehmer,
    Factorization of certain cyclotomic functions, Ann. of Math. (2) 34 (1933), no. 3, 461-479. MR 1503118
  • 14. Douglas Lind, Dynamical properties of quasihyperbolic toral automorphisms, Ergodic Theory Dynam. Systems 2 (1982), no. 1, 49-68. MR 684244 (84g:28017)
  • 15. Douglas Lind, Klaus Schmidt, and Thomas Ward, Mahler measure and entropy for commuting automorphisms of compact groups, Invent. Math. 101 (1990), no. 3, 593-629. MR 1062797 (92j:22013)
  • 16. Richard Miles, Zeta functions for elements of entropy rank one actions, Ergodic Theory Dynam. Systems, 27 (2007), no. 2, 567-582. MR 2308145
  • 17. Richard Miles, Periodic points of endomorphisms on solenoids and related groups, preprint, 2006.
  • 18. Richard Miles and Thomas Ward, Periodic point data detects subdynamics in entropy rank one, Ergodic Theory Dynam. Systems 26 (2006), no. 6, 1913-1930. MR 2279271
  • 19. Klaus Schmidt, Dynamical systems of algebraic origin, Progress in Mathematics, vol. 128, Birkhäuser Verlag, Basel, 1995. MR 1345152 (97c:28041)
  • 20. Thomas Ward.
    An uncountable family of group automorphisms, and a typical member.
    Bull. London Math. Soc. 29 (1997) no. 5, 577-584. MR 1458718 (98k:22028)
  • 21. Thomas Ward.
    Almost all $ S$-integer dynamical systems have many periodic points.
    Ergodic Theory Dynam. Systems, 18 (1998), no. 2, 471-486. MR 1619569 (99k:58152)
  • 22. Kunrui Yu.
    Linear forms in $ p$-adic logarithms. II.
    Compositio Math., 74 (1990), no. 1, 15-113. MR 1055245 (91h:11065a)
  • 23. S. A. Yuzvinski{\u{\i\/}}\kern.15em, Calculation of the entropy of a group-endomorphism, Sibirsk. Mat. Z., 8, (1967), 230-239. MR 0214726 (35:5575)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 22D40, 37A15, 37A35

Retrieve articles in all journals with MSC (2000): 22D40, 37A15, 37A35


Additional Information

Richard Miles
Affiliation: School of Mathematics, KTH, SE-100 44 Stockholm, Sweden

Thomas Ward
Affiliation: School of Mathematics, University of East Anglia, Norwich, NR4 7TJ, United Kingdom

DOI: https://doi.org/10.1090/S0002-9939-07-09018-1
Received by editor(s): September 25, 2006
Published electronically: September 7, 2007
Additional Notes: This research was supported by E.P.S.R.C. grant EP/C015754/1. Both authors express their thanks to Graham Everest and Shaun Stevens for helpful discussions.
Communicated by: Jane M. Hawkins
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society