Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On some random thin sets of integers


Authors: Daniel Li, Hervé Queffélec and Luis Rodríguez-Piazza
Journal: Proc. Amer. Math. Soc. 136 (2008), 141-150
MSC (2000): Primary 43A46; Secondary 42A55, 42A61
DOI: https://doi.org/10.1090/S0002-9939-07-09049-1
Published electronically: October 12, 2007
MathSciNet review: 2350399
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show how different random thin sets of integers may have different behaviour. First, using a recent deviation inequality of Boucheron, Lugosi and Massart, we give a simpler proof of one of our results in Some new thin sets of integers in harmonic analysis, Journal d'Analyse Mathématique 86 (2002), 105-138, namely that there exist $ \frac{4}{3}$-Rider sets which are sets of uniform convergence and $ \Lambda (q)$-sets for all $ q < \infty $ but which are not Rosenthal sets. In a second part, we show, using an older result of Kashin and Tzafriri, that, for $ p > \frac{4}{3}$, the $ p$-Rider sets which we had constructed in that paper are almost surely not of uniform convergence.


References [Enhancements On Off] (What's this?)

  • 1. S. BOUCHERON, G. LUGOSI, P. MASSART, Concentration inequalities using the entropy method, Annals of Probability 31 (3) (2003), 1583-1614. MR 1989444 (2004i:60023)
  • 2. G.B. JOHNSON, G. SCHECHTMAN, Remarks on Talagrand's deviation inequality for Rademacher functions, Texas Functional Analysis Seminar 1988-1989. The University of Texas (1989). Lecture Notes in Math., 1470, Springer, Berlin, 1991. MR 1126739 (92m:60017)
  • 3. B.S. KASHIN, L.A. TZAFRIRI, Random sets of uniform convergence, Mat. Zametki (Math. Notes) 54 (1) (1993), 17-33 [677-687] ; Letter to the Editor, Math. Notes 58 (4) (1995), 1124-1125. MR 1244478 (95c:42009); MR 1378341
  • 4. P. LEFÈVRE, D. LI, H. QUEFFÉLEC, L. RODRÍGUEZ-PIAZZA, Lacunary sets and function spaces with finite cotype, J. Funct. Anal. 188 (2002), 272-291. MR 1878638 (2002j:42033)
  • 5. P. LEFÈVRE, L. RODRÍGUEZ-PIAZZA, $ p$-Rider sets are $ q$-Sidon sets, Proc. Amer. Math. Soc. 131 (2002), 1829-1838. MR 1955271 (2004c:43007)
  • 6. M. LEDOUX, M. TALAGRAND, Probability in Banach spaces, Ergeb. der Math. 23, Springer (1991). MR 1102015 (93c:60001)
  • 7. D. LI, A remark about $ \Lambda (p)$-sets and Rosenthal sets, Proc. Amer. Math. Soc. 126 (1998), 3329-3333. MR 1459133 (99a:43005)
  • 8. D. LI, H. QUEFFÉLEC, Introduction à l'Étude des espaces de Banach, Analyse et probabilités. Cours Spécialisés 12, Société Mathématique de France (2004). MR 2124356 (2006c:46012)
  • 9. D. LI, H. QUEFFÉLEC, L. RODRÍGUEZ-PIAZZA, Some new thin sets of integers in Harmonic Analysis, Journal d'Analyse Mathématique 86 (2002), 105-138. MR 1894479 (2003e:43007)
  • 10. F. LUST-PIQUARD, Bohr local properties of $ C_\Lambda (\mathbb{T})$, Colloq. Math. 58 (1989), 29-38. MR 1028158 (91c:43009)
  • 11. G. PISIER, Sur l'espace de Banach des séries de Fourier aléatoires presque sûrement continues, Séminaire sur la géométrie des espaces de Banach 1977-1978, Ecole Polytechnique Paris (1978), exposés 17-18. MR 520216 (80j:60054)
  • 12. D. RIDER, Randomly continuous functions and Sidon sets, Duke Math. J. 42 (1975), 759-764. MR 0387965 (52:8802)
  • 13. L. RODRÍGUEZ-PIAZZA, Caractérisation des ensembles $ p$-Sidon p.s., C.R.A.S. Paris Sér. I Math. 305 (1987), 237-240. MR 907951 (88h:43005)
  • 14. H.P. ROSENTHAL, On Trigonometric Series Associated with Weak$ ^\ast$ closed Subspaces of Continuous Functions, J. Math. and Mech. 17 (1967), 485-490. MR 0216229 (35:7064)
  • 15. W. RUDIN, Trigonometric series with gaps, J. Math. and Mech. 9 (1960), 203-228. MR 0116177 (22:6972)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 43A46, 42A55, 42A61

Retrieve articles in all journals with MSC (2000): 43A46, 42A55, 42A61


Additional Information

Daniel Li
Affiliation: Université d’Artois, Laboratoire de Mathématiques de Lens EA 2462–FR 2956, Faculté des Sciences Jean Perrin, 23, rue J. Souvraz SP 18, F-62307 Lens Cedex, France
Email: daniel.li@euler.univ-artois.fr

Hervé Queffélec
Affiliation: Laboratoire Paul Painlevé UMR CNRS 8524, U.F.R. de Mathématiques Pures et Appliquées, Bât. M2, Université des Sciences et Technologies de Lille 1, F-59665 Villeneuve d’Ascq Cedex, France
Email: Herve.Queffelec@math.univ-lille1.fr

Luis Rodríguez-Piazza
Affiliation: Universidad de Sevilla, Facultad de Matemáticas, Departamento de Análisis Matemático, Apartado de Correos 1160, 41080 Sevilla, Spain
Email: piazza@us.es

DOI: https://doi.org/10.1090/S0002-9939-07-09049-1
Keywords: Boucheron-Lugosi-Massart deviation inequality, $\Lambda (q)$-sets, $p$-Rider sets, Rosenthal sets, selectors, sets of uniform convergence
Received by editor(s): September 19, 2006
Published electronically: October 12, 2007
Communicated by: Michael Lacey
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society