Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Global well-posedness of dissipative quasi-geostrophic equations in critical spaces


Author: Hantaek Bae
Journal: Proc. Amer. Math. Soc. 136 (2008), 257-261
MSC (2000): Primary 35Q40, 75D03
DOI: https://doi.org/10.1090/S0002-9939-07-09060-0
Published electronically: October 5, 2007
MathSciNet review: 2350411
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove global well-posedness for the dissipative quasi-geostrophic equation with initial data in critical Besov spaces $ B^{1+ {2 \over p}-2\alpha}_{p,q}$, $ 0< \alpha \leq 1$, provided that the $ B^{1+ {2 \over p}-2\alpha}_{p,q}$norm of the initial data is sufficiently small compared with the dissipative coefficient $ \kappa$.


References [Enhancements On Off] (What's this?)

  • [1] Chae, D., Lee, J. : Global well-posedness in the super-critical dissipative quasi-geostrophic equations. Comm. Math. Phys. 233(2), 297-311(2003). MR 1962043 (2004k:76031)
  • [2] Chemin, J. -Y., Lerner, N. : Flot de champs de vecteurs non lipschitziens et equations de Navier-Stokes. J. Differ. Eq. 122, 314-328(1995). MR 1354312 (96h:35153)
  • [3] Cordoba, A., Cordoba, D. : A maximum principle applied to quasi-geostrophic equations. Comm. Math. Phys. 249(3), 511-528(2004). MR 2084005 (2005f:76011)
  • [4] Wu, J. : Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov Spaces. Comm. Math. Phys. 263, 803-831(2005). MR 2211825 (2006k:35225)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35Q40, 75D03

Retrieve articles in all journals with MSC (2000): 35Q40, 75D03


Additional Information

Hantaek Bae
Affiliation: Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York, 10012-1185
Email: hantaek@cims.nyu.edu

DOI: https://doi.org/10.1090/S0002-9939-07-09060-0
Received by editor(s): December 4, 2006
Published electronically: October 5, 2007
Communicated by: David S. Tartakoff
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society