Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Partial fraction decompositions and trigonometric sum identities

Author: Wenchang Chu
Journal: Proc. Amer. Math. Soc. 136 (2008), 229-237
MSC (2000): Primary 42A15; Secondary 65T40
Published electronically: October 18, 2007
MathSciNet review: 2350408
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The partial fraction decomposition method is explored to establish several interesting trigonometric function identities, which may have applications to the evaluation of classical multiple hypergeometric series, trigonometric approximation and interpolation.

References [Enhancements On Off] (What's this?)

  • 1. B. C. Berndt, Explicit evaluations and reciprocity theorems for finite trigonometric sums Advances in Appl. Math.29 (2002), 358-385. MR 1942629 (2003h:11092)
  • 2. F. Calogero, Classical Many-Body Problems Amenable to Exact Treatments Lecture Notes in Physics: M66, Springer-Verlag (2001), Berlin. MR 1880249 (2003a:37074)
  • 3. W. Chu, Summations on trigonometric functions Applied Mathematics and Computation 141 (2003), 161-176. MR 1986078 (2004h:33003)
  • 4. W. Chu, A. Marini, Partial fractions and trigonometric identities Advances in Appl. Math.23 (1999), 115-175. MR 1699235 (2000i:33001)
  • 5. W. Chu, X. X. Wang, D. Y. Zheng, Application of the residue theorem to bilateral hypergeometric series Preprint, 2006.
  • 6. M. A. Dougall, On Vandermonde's theorem and some more general expansion Proc. Edinburgh. Math. Soc.25 (1907), 114-132.
  • 7. I. M. Gessel, Generating functions and generalized Dedekind sums Elec. J. Combin.4 (1997), #R11. MR 1444158 (98f:11032)
  • 8. R. A. Gustafson, Multilateral summation theorems for ordinary and basic hypergeometric series in $ U(n)$ SIAM J. Math. Anal.18 (1987), 1576-1596. MR 911651 (90e:33015)
  • 9. R. A. Gustafson, Some q-beta and Mellin-Barnes integrals on compact Lie groups and Lie algebras Trans. Amer. Math. Soc.341 (1994), 69-119. MR 1139492 (94c:33032)
  • 10. R. Kress, Numerical Analysis: Graduate Texts in Mathematics (GTM181) Springer-Verlag (1998), Berlin-Heidelberg. MR 1621952 (99c:65001)
  • 11. M. J. Mohlenkamp, L. Monzón, Trigonometric identities and sums of separable functions The Mathematical Intelligencer 27:2 (2005), 65-69. MR 2156535

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42A15, 65T40

Retrieve articles in all journals with MSC (2000): 42A15, 65T40

Additional Information

Wenchang Chu
Affiliation: Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, People’s Republic of China
Address at time of publication: Dipartimento di Matematica, Universit\a‘a degli Studi di Lecce, Lecce-Arne- sano, P. O. Box 193, 73100 Lecce, Italia

Keywords: Trigonometric interpolation, trigonometric formulae, partial fraction decomposition.
Received by editor(s): October 25, 2006
Published electronically: October 18, 2007
Communicated by: Carmen C. Chicone
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society