Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Bifurcation of homoclinics


Author: Jacobo Pejsachowicz
Journal: Proc. Amer. Math. Soc. 136 (2008), 111-118
MSC (2000): Primary 34C23, 58E07; Secondary 37G20, 47A53
DOI: https://doi.org/10.1090/S0002-9939-07-09088-0
Published electronically: September 27, 2007
MathSciNet review: 2350395
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that homoclinic trajectories of nonautonomous vector fields parametrized by a circle bifurcate from the stationary solution when the asymptotic stable bundles of the linearization at plus and minus infinity are ``twisted'' in different ways.


References [Enhancements On Off] (What's this?)

  • 1. Abbondandolo A., Majer P., Ordinary differential operators and Fredholm pairs, Math. Z. 243 (2003), 525-562. MR 1970015 (2004d:58014)
  • 2. Atiyah M. F., K-Theory, Benjamin, New York, 1967. MR 0224083 (36:7130)
  • 3. Berry M. V. ,Geometric amplitude factors in adiabatic quantum transitions, Proc. Roy. Soc. London Ser. A 430 (1990), 405-411. MR 1068305 (91k:81045)
  • 4. Coppel W. A., Dichotomies in stability theory, Lect. Notes in Math. 629, Springer Verlag, Berlin 1978. MR 0481196 (58:1332)
  • 5. Crandall M. G., Rabinowitz P. H., Bifurcation from simple eigenvalues, J. Functional Analysis 8(1971), 321-340. MR 0288640 (44:5836)
  • 6. Fitzpatrick P. M., Pejsachowicz, J., Nonorientability of the index bundle and several-parameter bifurcation. J. of Functional Anal. 98 (1991), 42-58. MR 1111193 (92g:58019)
  • 7. Fitzpatrick P. M., Pejsachowicz J., Parity and generalized multiplicity, Trans. Amer. Math. Soc. 326 (1991), 281-305. MR 1030507 (91j:58038)
  • 8. Morris J. R., Nonlinear ordinary and partial differential equations on unbounded domains, PhD thesis, University of Pittsburgh, 2005.
  • 9. Mrozek M., Reineck J. F., Srzednicki R., The Conley index over the circle, J. Dynam. Differential Equations 12 (2000), 385-409. MR 1790660 (2002m:37022)
  • 10. Palmer K. J., Exponential dichotomies and transversal homoclinic points, J. Diff. Eq. 104 (1988), 149-156. MR 958058 (89k:34052)
  • 11. Pejsachowicz J., Rabier P. J., Degree theory for $ C^1$-Fredholm mappings of index 0, Journal d'Analyse Mathématique 76 (1998), 289-319. MR 1676979 (2000a:58026)
  • 12. Sacker R. J., The splitting index for linear differential systems, J. Diff. Eq. 33 (1979), no. 3, 368-405. MR 543706 (81f:34020)
  • 13. Secchi S., Stuart, C. A., Global bifurcation of homoclinic solutions of Hamiltonian systems, Discrete Contin. Dyn. Syst. 9 (2003), 1493-1518. MR 2017678 (2005b:37138)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 34C23, 58E07, 37G20, 47A53

Retrieve articles in all journals with MSC (2000): 34C23, 58E07, 37G20, 47A53


Additional Information

Jacobo Pejsachowicz
Affiliation: Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Email: jacobo.pejsachowicz@polito.it

DOI: https://doi.org/10.1090/S0002-9939-07-09088-0
Keywords: Differential equations, homoclinics, bifurcation, index bundle
Received by editor(s): August 3, 2006
Published electronically: September 27, 2007
Communicated by: Carmen C. Chicone
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society