Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On Strichartz estimates for Schrödinger operators in compact manifolds with boundary


Authors: Matthew D. Blair, Hart F. Smith and Christopher D. Sogge
Journal: Proc. Amer. Math. Soc. 136 (2008), 247-256
MSC (2000): Primary 35Q40, 35B65; Secondary 35Q55, 35A17
DOI: https://doi.org/10.1090/S0002-9939-07-09114-9
Published electronically: October 12, 2007
MathSciNet review: 2350410
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove local Strichartz estimates with a loss of derivatives over compact manifolds with boundary. Our results also apply more generally to compact manifolds with Lipschitz metrics.


References [Enhancements On Off] (What's this?)

  • 1. Anton, R. Strichartz inequalities for Lipschitz metrics on manifolds and the nonlinear Schrödinger equation on domains. Preprint.
  • 2. Bourgain, J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal. 3 (1993), no. 2, 107-156. MR 1209299 (95d:35160a)
  • 3. Burq, N., Gérard, P., and Tzvetkov, N. Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Amer. J. Math. 126 (2004), 569-605. MR 2058384 (2005h:58036)
  • 4. Gilbarg D.; Trudinger, N. Elliptic Partial Differential Equations of Second Order. 2nd edition. Springer, New York, 1983. MR 737190 (86c:35035)
  • 5. Ginibre, J.; Velo, G. On the global Cauchy problem for some nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 309-323. MR 778977 (87a:35164)
  • 6. Keel, M.; Tao, T. Endpoint Strichartz Estimates. Amer. J. Math 120 (1998), 955-980. MR 1646048 (2000d:35018)
  • 7. Koch, H.; Tataru, D. Dispersive estimates for principally normal operators. Comm. Pure Appl. Math 58 (2005), 217-284. MR 2094851 (2005m:35323)
  • 8. Smith, H.F. Spectral cluster estimates for $ C^{1,1}$ metrics. Amer. J. Math., 128 (2006), 1069-1103. MR 2262171
  • 9. Smith, H.F.; Sogge, C.D. On the $ L^p$ norm of spectral clusters for compact manifolds with boundary. Acta Math., 198 (2007), 107-153. MR 2316270.
  • 10. Staffilani, G.; Tataru, D. Strichartz estimates for a Schrödinger operator with nonsmooth coefficients. Comm. Partial Differential Equations 27 (2002), no. 7-8, 1337-1372. MR 1924470 (2003f:35248)
  • 11. Strichartz, R. Restriction of Fourier transform to quadratic surfaces and decay of solutions to the wave equation. Duke Math J. 44 (1977), no. 3, 705-714. MR 0512086 (58:23577)
  • 12. Tataru, D. Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation. Amer. J. Math 122 (2000), no. 2, 349-376. MR 1749052 (2001c:35260)
  • 13. Tataru, D. Phase space transforms and microlocal analysis. Phase space analysis of partial differential equations. Vol. II, 505-524, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 2004. MR 2208883 (2007e:35309)
  • 14. M. Taylor, Pseudodifferential Operators and Nonlinear PDE. Progress in Mathematics, vol. 100, Birkhäuser, Boston, 1991. MR 1121019 (92j:35193)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35Q40, 35B65, 35Q55, 35A17

Retrieve articles in all journals with MSC (2000): 35Q40, 35B65, 35Q55, 35A17


Additional Information

Matthew D. Blair
Affiliation: Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218
Email: mblair@math.jhu.edu

Hart F. Smith
Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195
Email: hart@math.washington.edu

Christopher D. Sogge
Affiliation: Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218
Email: sogge@jhu.edu

DOI: https://doi.org/10.1090/S0002-9939-07-09114-9
Received by editor(s): October 31, 2006
Published electronically: October 12, 2007
Additional Notes: The authors were supported by the National Science Foundation, Grants DMS-0140499, DMS-0099642, and DMS-0354668.
Communicated by: Andreas Seeger
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society