Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On Strichartz estimates for Schrödinger operators in compact manifolds with boundary


Authors: Matthew D. Blair, Hart F. Smith and Christopher D. Sogge
Journal: Proc. Amer. Math. Soc. 136 (2008), 247-256
MSC (2000): Primary 35Q40, 35B65; Secondary 35Q55, 35A17
Published electronically: October 12, 2007
MathSciNet review: 2350410
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove local Strichartz estimates with a loss of derivatives over compact manifolds with boundary. Our results also apply more generally to compact manifolds with Lipschitz metrics.


References [Enhancements On Off] (What's this?)

  • 1. Anton, R. Strichartz inequalities for Lipschitz metrics on manifolds and the nonlinear Schrödinger equation on domains. Preprint.
  • 2. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107–156. MR 1209299, 10.1007/BF01896020
  • 3. N. Burq, P. Gérard, and N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math. 126 (2004), no. 3, 569–605. MR 2058384
  • 4. David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190
  • 5. J. Ginibre and G. Velo, On the global Cauchy problem for some nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 309–323 (English, with French summary). MR 778977
  • 6. Markus Keel and Terence Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), no. 5, 955–980. MR 1646048
  • 7. Herbert Koch and Daniel Tataru, Dispersive estimates for principally normal pseudodifferential operators, Comm. Pure Appl. Math. 58 (2005), no. 2, 217–284. MR 2094851, 10.1002/cpa.20067
  • 8. Hart F. Smith, Spectral cluster estimates for 𝐶^{1,1} metrics, Amer. J. Math. 128 (2006), no. 5, 1069–1103. MR 2262171
  • 9. Hart F. Smith and Christopher D. Sogge, On the 𝐿^{𝑝} norm of spectral clusters for compact manifolds with boundary, Acta Math. 198 (2007), no. 1, 107–153. MR 2316270, 10.1007/s11511-007-0014-z
  • 10. Gigliola Staffilani and Daniel Tataru, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Comm. Partial Differential Equations 27 (2002), no. 7-8, 1337–1372. MR 1924470, 10.1081/PDE-120005841
  • 11. Robert S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705–714. MR 0512086
  • 12. Daniel Tataru, Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation, Amer. J. Math. 122 (2000), no. 2, 349–376. MR 1749052
  • 13. Daniel Tataru, Phase space transforms and microlocal analysis, Phase space analysis of partial differential equations. Vol. II, Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 2004, pp. 505–524. MR 2208883
  • 14. Michael E. Taylor, Pseudodifferential operators and nonlinear PDE, Progress in Mathematics, vol. 100, Birkhäuser Boston, Inc., Boston, MA, 1991. MR 1121019

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35Q40, 35B65, 35Q55, 35A17

Retrieve articles in all journals with MSC (2000): 35Q40, 35B65, 35Q55, 35A17


Additional Information

Matthew D. Blair
Affiliation: Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218
Email: mblair@math.jhu.edu

Hart F. Smith
Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195
Email: hart@math.washington.edu

Christopher D. Sogge
Affiliation: Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218
Email: sogge@jhu.edu

DOI: https://doi.org/10.1090/S0002-9939-07-09114-9
Received by editor(s): October 31, 2006
Published electronically: October 12, 2007
Additional Notes: The authors were supported by the National Science Foundation, Grants DMS-0140499, DMS-0099642, and DMS-0354668.
Communicated by: Andreas Seeger
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.