Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A cohomological characterization of Leibniz central extensions of Lie algebras


Authors: Naihong Hu, Yufeng Pei and Dong Liu
Journal: Proc. Amer. Math. Soc. 136 (2008), 437-447
MSC (2000): Primary 17A32, 17B56; Secondary 17B65
DOI: https://doi.org/10.1090/S0002-9939-07-08985-X
Published electronically: October 24, 2007
MathSciNet review: 2358481
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Mainly motivated by Pirashvili's spectral sequences on a Leibniz algebra, a cohomological characterization of Leibniz central extensions of Lie algebras is given. In particular, as applications, we obtain the cohomological version of Gao's main theorem for Kac-Moody algebras and answer a question in an earlier paper by Liu and Hu (2004).


References [Enhancements On Off] (What's this?)

  • 1. E. Arbarello, C. De Concini, V. Kac, C. Procesi, Moduli spaces of curves and representation theory, Comm. Math. Phys. 117 (1), (1988), 1-36. MR 946992 (89i:14019)
  • 2. S. Berman, On derivations of Lie algebras, Can. J. Math. vol. XXVIII (1), (1976), 174-180. MR 0422370 (54:10360)
  • 3. S. Berman, On the low-dimensional cohomology of some infinite-dimensional simple Lie algebras, Pacific J. Math. 83 (1), (1979), 27-36. MR 555036 (80k:17009)
  • 4. J.M. Casas, E. Faro, A.M. Vieites, Abelian extensions of Leibniz algebras, Comm. Algebra, 27 (6), (1999), 2833-2846. MR 1687285 (2000f:17001)
  • 5. D. Dokovic, K. Zhao, Some infinite-dimensional simple Lie algebras in characteristic 0 related to those of Block, J. Pure and Applied Algebra, 127 (2), (1998), 153-165. MR 1620712 (99b:17027)
  • 6. R. Farnsteiner, Central extensions and invariant bilinear forms of graded Lie algebras, Algebras, Groups and Geom. 3, (1986), 431-455. MR 901809 (88j:17014)
  • 7. R. Farnsteiner, Derivation and central extensions of finitely generated graded Lie algebras, J. Algebra, 118, (1988), 33-45. MR 961324 (89h:17018)
  • 8. Y. Gao, Central extensions of nonsymmetrizable Kac-Moody algebras over commutative algebras, Proc. Amer. Math. Soc. 121, (1994), 67-76. MR 1185261 (94g:17046)
  • 9. Y. Gao, The second Leibniz homology group for Kac-Moody Lie algebras, Bull. of Lond. Math. Soc. 32, (2000), 25-33. MR 1718757 (2000i:17038)
  • 10. A.V. Gnedbaye, Third homology groups of universal central extensions of a Lie algebra, Afrika Matematika Serie 3, 10 (1998). (ICTP Preprint No. IC98059). MR 1693325 (2000e:17003)
  • 11. Y. Hagiwara, T. Mizutani, Leibniz algebras associated with foliations, Kodai Math. J. 25 (2), (2002), 151-165. MR 1913522 (2003g:17001)
  • 12. V. Kac, Infinite Dimensional Lie Algebras, Cambridge University Press, third edition, 1990. MR 1104219 (92k:17038)
  • 13. E. Kirkman, C. Procesi, L. Small, A $ q$-analog for the Virasoro algebra, Comm. Algebra. 22, (1994), 3755-3774. MR 1280096 (96b:17016)
  • 14. J.S. Koszul, Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France 78 (1950) 65-127. MR 0036511 (12:120g)
  • 15. W. Li, $ 2$-Cocycles on the algebras of differential operators, J. Algebra. 122, (1989), 64-80.
  • 16. D. Liu, N. Hu, Leibniz central extensions on some infinite-dimensional algebras, Comm. Algebra. 32 (6), (2004), 2385-2405. MR 2100478 (2005g:17007)
  • 17. J. Loday, Cyclic Homology, vol. 301, Grund. Math. Wiss., Springer-Verlag, 1992. MR 1217970 (94a:19004)
  • 18. J. Loday, T. Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann. 296 (1), (1993), 139-158. MR 1213376 (94j:17003)
  • 19. J.M. Lodder, Leibniz cohomology for differentiable manifolds, Ann. Inst. Fourier, Grenoble, 48 (1), (1998), 73-95. MR 1614906 (99b:17003)
  • 20. P. Papi, Cohomology of tensor product of quantum planes, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei 9, Mat. Appl. 3 (1), (1992), 5-13. MR 1159994 (93e:58012)
  • 21. T. Pirashvili, On Leibniz homology, Ann. Inst. Fourier (Grenoble) 44 (2), (1994), 401-411. MR 1296737 (96f:17030)
  • 22. R. L. Wilson, Euclidean Lie algebras are universal central extensions, Lie Algebras and Related Topics, Lecture Notes in Math. 933 (ed. David Winter, Springer, New York, 1982) 210-213. MR 675118 (84a:17011)
  • 23. K. Zhao, Automorphism groups of the algebras of differential operators, J. of Capital Normal Uni. 15, (1994), 1-7.
  • 24. L. Zhu, D. Meng, Commutative associative algebras and quadratic Lie algebras, Comm. Algebra 29, (2001), 2249-2268. MR 1837975 (2002f:17006)
  • 25. L. Zhu, D. Meng, Structure of degenerate Block algebras, Algebra Colloq. 10, (2003), 53-62. MR 1961506 (2004a:17007)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 17A32, 17B56, 17B65

Retrieve articles in all journals with MSC (2000): 17A32, 17B56, 17B65


Additional Information

Naihong Hu
Affiliation: Department of Mathematics, East China Normal University, Shanghai 200062, People’s Republic of China
Email: nhhu@euler.math.ecnu.edu.cn

Yufeng Pei
Affiliation: Department of Mathematics, East China Normal University, Shanghai 200062, People’s Republic of China
Email: peiyufeng@gmail.com

Dong Liu
Affiliation: Department of Mathematics, Huzhou Teachers College, Zhejiang, Huzhou 313000, People’s Republic of China
Email: liudong@hytc.zj.cn

DOI: https://doi.org/10.1090/S0002-9939-07-08985-X
Keywords: Leibniz central extensions, Leibniz cohomology, invariant symmetric bilinear forms, dual space derivations.
Received by editor(s): May 17, 2006
Received by editor(s) in revised form: October 28, 2006
Published electronically: October 24, 2007
Additional Notes: This work is supported in part by the NNSF (Grants 10431040, 10671027, 10701019), the TRAPOYT and the FUDP from the MOE of China, and the SRSTP from the STCSM
Communicated by: Dan M. Barbasch
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society