Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Nontrivial compact blow-up sets of smaller dimension


Authors: Mayte Pérez-Llanos and Julio D. Rossi
Journal: Proc. Amer. Math. Soc. 136 (2008), 593-596
MSC (2000): Primary 35B40, 35K65, 35J25, 35J60
DOI: https://doi.org/10.1090/S0002-9939-07-09028-4
Published electronically: October 24, 2007
MathSciNet review: 2358500
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We provide examples of solutions to parabolic problems with nontrivial blow-up sets of dimension strictly smaller than the space dimension. To this end we just consider different diffusion operators in different variables, for example, $ u_t= (u^m)_{xx} + u_{yy} + u^m$ or $ u_t = (\vert u_x\vert^{p-2} u_x)_x + u_{yy} + u^{p-1}$. For both equations, we prove that there exists a solution that blows up in the segment $ B(u) = [-L,L] \times \{ 0 \} \subset \RR^2$.


References [Enhancements On Off] (What's this?)

  • 1. X. Y. Chen and H. Matano. Convergence, asymptotic periodicity and finite point blow up in one-dimensional semilinear heat equations. J. Differential Equations, Vol. 78 (1989), 160-190. MR 986159 (90e:35018)
  • 2. C. Cortázar, M. Del Pino and M. Elgueta. On the blow-up set for $ u\sb t=\Delta u\sp m+u\sp m$, $ m>1$. Indiana Univ. Math. J. Vol. 47(2) (1998), 541-561. MR 1647932 (99h:35085)
  • 3. C. Cortázar, M. Del Pino and M. Elgueta. Uniqueness and stability of regional blow-up in a porous-medium equation. Ann. Inst. H. Poincaré Anal. Non Linéaire. Vol. 19(6) (2002), 927-960. MR 1939091 (2003h:35124)
  • 4. C. Cortázar, M. Elgueta and P. Felmer. Symmetry in an elliptic problem and the blow-up set of a quasilinear heat equation. Comm. Partial Diff. Eq. Vol. 21(3&4) (1996), 507-520. MR 1387457 (97d:35053)
  • 5. V. Galaktionov; J. L. Vázquez. The problem of blow-up in nonlinear parabolic equations, Discrete Contin. Dynam. Systems A 8 (2002), 399-433. MR 1897690 (2003c:35067)
  • 6. F. Merle. Solution of a nonlinear heat equation with arbitrarily given blow-up points. Comm. Pure Appl. Math. Vol. XLV (1992), 263-300. MR 1151268 (92k:35160)
  • 7. C. E. Muller and F. B. Weissler. Single point blow up for a general semilinear heat equation. Indiana Univ. Math. J., Vol. 34 (1983), 881-913. MR 808833 (87a:35023)
  • 8. A. Samarski, V. A. Galaktionov, S. P. Kurdyunov and A. P. Mikailov. Blow-up in quasilinear parabolic equations. Walter de Gruyter, Berlin, 1995. MR 1330922 (96b:35003)
  • 9. F. B. Weissler. Single point blow up of semilinear initial boundary value problems. J. Differential Equations, Vol. 55 (1984), 204-224. MR 764124 (86a:35076)
  • 10. H. Zaag. Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation. Preprint. MR 2228461 (2007b:35189)
  • 11. H. Zaag. On the regularity of the blow-up set for semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire. Vol. 19(5) (2002), 505-542. MR 1922468 (2003h:35118)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35B40, 35K65, 35J25, 35J60

Retrieve articles in all journals with MSC (2000): 35B40, 35K65, 35J25, 35J60


Additional Information

Mayte Pérez-Llanos
Affiliation: Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Spain
Email: mtperez@math.uc3m.es

Julio D. Rossi
Affiliation: Departamento de Matemáticas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Email: jrossi@dm.uba.ar

DOI: https://doi.org/10.1090/S0002-9939-07-09028-4
Keywords: Blow-up sets, $p$-Laplacian, porous media.
Received by editor(s): November 8, 2006
Published electronically: October 24, 2007
Additional Notes: The first author is partially supported by DGICYT grant PB94-0153 (Spain).
The second author is partially supported by ANPCyT PICT 5009, UBA X066 and CONICET (Argentina).
Communicated by: David S. Tartakoff
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society