Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Function representation of a noncommutative uniform algebra


Author: Krzysztof Jarosz
Journal: Proc. Amer. Math. Soc. 136 (2008), 605-611
MSC (2000): Primary 46H20, 46H05
DOI: https://doi.org/10.1090/S0002-9939-07-09033-8
Published electronically: November 1, 2007
MathSciNet review: 2358502
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a Gelfand type representation of a real noncommutative Banach algebra $ A$ satisfying $ \left\Vert f^{2}\right\Vert =\left\Vert f\right\Vert ^{2}$, for all $ f\in A.$


References [Enhancements On Off] (What's this?)

  • 1. M. Abel and K. Jarosz, Noncommutative Uniform Algebras, Studia Math. 162 (2004), 213-218. MR 2047651 (2005i:46055)
  • 2. B. Aupetit and J. Zemanek, On the real spectral radius in real Banach algebras, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 26 (1978) 969-973. MR 528979 (80e:46034)
  • 3. F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973. MR 0423029 (54:11013)
  • 4. R. Engelking, General Topology, Mathematical Monographs, Vol. 60, PWN--Polish Scientific Publishers, Warsaw, 1977. 626 pp. MR 0500780 (58:18316b)
  • 5. S. Heinrich, Ultrapowers in Banach space theory, J. Reine Angew. Math., 313 (1980), 72-104. MR 552464 (82b:46013)
  • 6. R. A. Hirschfeld and W. Zelazko, On spectral norm Banach algebras. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 195-199. MR 0229043 (37:4621)
  • 7. J. Holladay, A note on the Stone-Weierstrass theorem for quaternions. Proc. Amer. Math. Soc. 8 (1957), 656-657. MR 0087047 (19:293d)
  • 8. K. Jarosz , Ultraproduct and small bound perturbations, Pacific J. Math., 148 (1991) 81-88. MR 1091531 (91m:46022)
  • 9. S. H. Kulkarni and B. V. Limaye, Real Function Algebras, Monographs and Textbooks in Pure and Applied Math., 168, Marcel Dekker, Inc., New York, 1992. MR 1197884 (93m:46059)
  • 10. S. V. Lüdkovsky and F. van Oystaeyen, Differentiable functions of quaternion variables. Bull. Sci. Math. 127 (2003), no. 9, 755-796. MR 2015544 (2005a:58010)
  • 11. T. Palmer, Banach Algebras and the General Theory of $ ^{\ast }$-Algebras. vol. I. Algebras and Banach algebras, Encyclopedia of Mathematics and its Applications, 49, Cambridge Univ. Press, Cambridge, 1994. MR 1270014 (95c:46002)
  • 12. A. Sudbery, Quaternionic analysis. Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 2, 199-224. MR 516081 (80g:30031)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46H20, 46H05

Retrieve articles in all journals with MSC (2000): 46H20, 46H05


Additional Information

Krzysztof Jarosz
Affiliation: Department of Mathematics and Statistics, Southern Illinois University, Edwardsville, Illinois 62026-1653
Email: kjarosz@siue.edu

DOI: https://doi.org/10.1090/S0002-9939-07-09033-8
Keywords: Uniform algebra, function algebra, Banach algebra, quaternions
Received by editor(s): October 31, 2005
Received by editor(s) in revised form: November 24, 2006
Published electronically: November 1, 2007
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society