PRINCIPAL GROUPOID C^*-ALGEBRAS WITH BOUNDED TRACE

LISA ORLOFF CLARK AND ASTRID AN HUEF

(Communicated by Joseph A. Ball)

ABSTRACT. Suppose G is a second countable, locally compact, Hausdorff, principal groupoid with a fixed left Haar system. We define a notion of integrability for groupoids and show G is integrable if and only if the groupoid C^*-algebra $C^*(G)$ has bounded trace.

1. INTRODUCTION

Let H be a locally compact, Hausdorff group acting continuously on a locally compact, Hausdorff space X, so that (H, X) is a transformation group. A lovely theorem of Green says that if H acts freely on X, then the associated transformation-group C^*-algebra $C_0(X) \rtimes H$ has continuous trace if and only if the action of H on X is proper [5, Theorem 17]. Muhly and Williams defined a notion of proper groupoid and proved that for principal groupoids G, the groupoid C^*-algebra $C^*(G)$ has continuous trace if and only if the groupoid is proper [8, Theorem 2.3]. Of course, when $G = H \times X$ is the transformation-group groupoid, then G is proper if and only if the action of H on X is proper.

In [13] Rieffel introduced a notion of an integrable action of a group H on a C^*-algebra A. This notion of integrability for $A = C_0(X)$ turned out to characterize when $C_0(X) \rtimes H$, arising from a free action of H on X, has bounded trace [6, Theorem 4.8]. In this paper we define a notion of integrability for groupoids (see Definition 3.1) which, when $G = H \times X$ is the transformation-group groupoid, reduces to an integrable action of H on X (see Example 3.3). We then prove that for principal groupoids G, $C^*(G)$ has bounded trace if and only if the groupoid is integrable (see Theorem 4.4). This theorem is thus very much in the spirit of [8, Theorem 2.4], [4, Theorem 7.9], [4, Theorem 4.1] (see also [3, Corollary 5.9]) and [4, Theorem 5.3], which characterize when principal-groupoid C^*-algebras are, respectively, continuous-trace, Fell, CCR and GCR C^*-algebras. The key technical tools used to prove Theorem 4.4 are, first, a homeomorphism of the spectrum of $C^*(G)$ onto the orbit space [4, Proposition 5.1] and, second, a generalisation to groupoids of the notion of k-times convergence in the orbit space of a transformation group from [4].

Received by the editors August 23, 2006 and, in revised form, December 6, 2006.

2000 Mathematics Subject Classification. Primary 46L05, 46L55.

Key words and phrases. Locally compact groupoid, C^*-algebra, bounded trace.

This research was supported by the Australian Research Council and an AWM-NSF Mentoring Travel Grant.

©2007 American Mathematical Society
2. Preliminaries

Let A be a C^*-algebra. An element a of the positive cone A^+ of A is called a bounded-trace element if the map $\pi \mapsto \text{tr}(\pi(a))$ is bounded on the spectrum Λ of A; the linear span of the bounded-trace elements is a two-sided $*$-ideal in A. We say A has bounded trace if the ideal of (the span of) the bounded-trace elements is dense in A.

Throughout, G is a locally compact, Hausdorff groupoid; in our main results G is assumed to be second-countable and principal. We denote the unit space of G, and the range and source maps $r, s : G \to G^0$ are $r(\gamma) = \gamma\gamma^{-1}$ and $s(\gamma) = \gamma^{-1}\gamma$, respectively. We let $\pi : G \to G^0 \times G^0$ be the map $\pi(\gamma) = (r(\gamma), s(\gamma))$; recall that G is principal if π is injective. In order to define the groupoid C^*-algebra, we also assume that G is equipped with a fixed left Haar system: a set $\{\lambda^x : x \in G^0\}$ of non-negative Radon measures on G such that

1. $\text{supp} \lambda^x = r^{-1}(\{x\})$;
2. for $f \in C_c(G)$, the function $x \mapsto \int f \, d\lambda^x$ on G^0 is in $C_c(G^0)$; and
3. for $f \in C_c(G)$ and $\gamma \in G$, the following equation holds:
 $$\int f(\gamma a) \, d\lambda^{s(\gamma)}(\alpha) = \int f(\alpha) \, d\lambda^{\gamma(\gamma)}(\alpha).$$

Condition (3) implies that $\lambda^{s(\gamma)}(\gamma^{-1}E) = \lambda^{r(\gamma)}(E)$ for measureable sets E. The collection $\{\lambda_x : x \in G^0\}$, where $\lambda_x(E) := \lambda^x(E^{-1})$, gives a fixed right Haar system such that the measures are supported on $s^{-1}(\{x\})$ and

$$\int f(\gamma a) \, d\lambda_{r(\alpha)} = \int f(\gamma) \, d\lambda_{s(\alpha)}$$

for $f \in C_c(G)$ and $\gamma \in G$. We will move freely between these two Haar systems.

If $N \subseteq G^0$, then the saturation of N is $r(s^{-1}(N)) = s(r^{-1}(N))$. In particular, we call the saturation of $\{x\}$ the orbit of $x \in G^0$ and denote it by $[x]$.

If G is principal and all the orbits are locally closed, then by [4, Proposition 5.1] the orbit space $G^0/G = \{[x] : x \in G^0\}$ and the spectrum $C^*(G)^w$ of the groupoid C^*-algebra $C^*(G)$ are homeomorphic. This homeomorphism is induced by the map $x \mapsto L^x : G^0 \to C^*(G)^w$, where $L^x : C^*(G) \to B(L^2(G, \lambda_x))$ is given by

$$L^x(f)\xi(\gamma) = \int f(\gamma a)\xi(\alpha^{-1})d\lambda^x(\alpha)$$

for $f \in C_c(G)$ and $\xi \in L^2(G, \lambda_x)$.

3. Integrable Groupoids and Convergence

In the Orbit Space of a Groupoid

The following definition is motivated by the notion of an integrable action of a locally compact, Hausdorff group on a space from [6, Definition 3.2].

Definition 3.1. A locally compact, Hausdorff groupoid G is integrable if for every compact subset N of G^0,

$$\sup_{x \in N} \{\lambda^x(s^{-1}(N))\} < \infty,$$

or, equivalently, $\sup_{x \in N} \{\lambda_x(r^{-1}(N))\} < \infty$.
Remark 3.2. (1) Suppose that G is a principal groupoid. Then $\lambda^x(s^{-1}(E)) = \lambda^y(s^{-1}(E))$ for all $x, y \in G^0$ such that $y \in [x]$. The map $\lambda^x \mapsto s * \lambda^x$, where $s * \lambda^x(E) = \lambda^x(s^{-1}(E))$, gives a family of measures $\{\alpha_{[x]} : [x] \in G^0 / G\}$ such that $\alpha_{[x]}$ is a measure on $[x]$ supported on $[x]$, and, for any $f \in C_c(G)$, the function

$$x \mapsto \int_{y \in [x]} f(\pi^{-1}(x,y)) \, d\alpha_{[x]}(y)$$

is continuous. (Recall that $\pi : \gamma \mapsto (r(\gamma), s(\gamma))$ is injective by definition of principality.) In fact, the existence of the Haar system $\{\lambda^x\}$ is equivalent to the existence of the family $\{\alpha_{[x]}\}$ [12] Examples 2.5(c)]. Thus a principal groupoid G is integrable if and only if for every compact subset M of G^0 / G, the function $[x] \mapsto \alpha_{[x]}(M)$ is bounded.

(2) We could have taken the supremum in (5.1) over the whole unit space, that is,

$$\sup_{x \in G^0} \{\lambda^x(s^{-1}(N))\} = \sup_{x \in N} \{\lambda^x(s^{-1}(N))\}.$$ To see this, first note that if y is not in the saturation $r(s^{-1}(N)) = s(r^{-1}(N))$ of N, then $s^{-1}(N) \cap r^{-1}([y]) = \emptyset$, and hence $\lambda^y(s^{-1}(N)) = 0$. Second, if y is in the saturation of N, then there exists a $\gamma \in G$ such that $s(\gamma) = y$ and $r(\gamma) \in N$. Then $r^{-1}([y]) \cap s^{-1}(N) = \gamma^{-1}r^{-1}([y]) \cap s^{-1}(N) = \gamma^{-1}(r^{-1}([r(\gamma)]) \cap s^{-1}(N))$, and now

$$\lambda^y(s^{-1}(N)) = \lambda^y(r^{-1}([y]) \cap s^{-1}(N)) = \lambda^y(\gamma^{-1}r^{-1}([r(\gamma)]) \cap s^{-1}(N)) = \lambda^{s(\gamma)}(r^{-1}([r(\gamma)]) \cap s^{-1}(N)) = \lambda^{s(\gamma)}(s^{-1}(N))$$

with $r(\gamma) \in N$.

Example 3.3. Let (H, X) be a locally compact, Hausdorff transformation group with H acting on the left of the space X. Then $G = H \times X$ with

$$G^2 = \{(h, x), (k, y) \in G \times G : y = h^{-1} \cdot x\}$$

and operations $(h, x)(k, h^{-1} \cdot x) = (hk, x)$ and $(h, x)^{-1} = (h^{-1}, h^{-1} \cdot x)$ is called the transformation-group groupoid. We identify the unit space $\{e\} \times X$ with X, and then the range and source maps $r, s : G \to X$ are $s(h, x) = h^{-1} \cdot x$ and $r(h, x) = x$. If δ_x is the point-mass measure on X and μ is a left Haar measure on H, then $\{\lambda^x := \mu \times \delta_x : x \in X\}$ is a left Haar system for G. Now

$$\lambda^x(s^{-1}(N)) = \mu(\{h \in H : h^{-1} \cdot x \in N\})$$

and hence

$$\sup_{x \in N} \{\lambda^x(s^{-1}(N))\} = \sup_{x \in N} \{\mu(\{h \in H : h^{-1} \cdot x \in N\})\};$$

that is, Definition [5.1] reduces to [6] Definition 3.2].

Example 3.4. In [5] pp. 95-96] Green describes an action as follows: the space X is a closed subset of \mathbb{R}^3 and consists of countably many orbits, with orbit representatives $x_0 = (0, 0, 0)$ and $x_n = (2^{-2n}, 0, 0)$ for $n = 1, 2, \ldots$. The action of the group $H = \mathbb{R}$ on X is given by $s \cdot x_0 = (0, s, 0)$ for all s; and for $n \geq 1$,

$$s \cdot x_n = \begin{cases} (2^{-2n}, s, 0) & \text{if } s \leq n; \\
(2^{-2n} - \frac{n-s}{\pi}, 2^{-2n-1}, n \cos(s-n), n \sin(s-n)) & \text{if } n < s < n + \pi; \\
(2^{-2n-1}, s - \pi - 2n, 0) & \text{if } s \geq n + \pi. \end{cases}$$
So the orbit of each \(x_n \) (\(n \geq 1 \)) consists of two vertical lines joined by an arc of a helix situated on a cylinder of radius \(n \); the action moves \(x_n \) along the vertical lines at unit speed and along the arc at radial speed. This action is free, non-proper and integrable (see [13] Example 1.18 or [6] Example 3.3). So the associated transformation-group groupoid \(G = H \times X \) is principal and integrable by Example 3.3.

The following characterization of integrability will be important later. In the case of a transformation-group groupoid, Lemma 3.5 reduces to a special case of [1] Lemma 3.5.

Lemma 3.5. Let \(G \) be a locally compact, Hausdorff groupoid. Then \(G \) is integrable if and only if, for each \(z \in G^0 \), there exists an open neighborhood \(U \) of \(z \) in \(G^0 \) such that

\[
\sup_{x \in U} \{ \lambda^x(s^{-1}(U)) \} < \infty.
\]

Proof. The proof is exactly the same as the proof of [1] Lemma 3.5. \(\square \)

If a groupoid fails to be integrable, there exists a \(z \in G^0 \) such that

\[
\sup_{x \in U} \{ \lambda^x(s^{-1}(U)) \} = \infty
\]

for every open neighborhood \(U \) of \(z \); we then say that the groupoid fails to be integrable at \(z \).

It is evident from [1] 2 that integrability and \(k \)-times convergence in the orbit space of a transformation group are closely related. Moreover, Lemma 2.6 of [8] says that, if a principal groupoid fails to be proper and the orbit space \(G^0/G \) is Hausdorff, then there exists a sequence that converges 2-times in \(G^0/G \) in the sense of Definition 3.6.

Definition 3.6. A sequence \(\{x_n\} \) in the unit space of a groupoid \(G \) converges \(k \)-times in \(G^0/G \) to \(z \in G^0 \) if there exist \(k \) sequences

\[
\{\gamma_n^{(1)}\}, \{\gamma_n^{(2)}\}, \ldots, \{\gamma_n^{(k)}\} \subseteq G
\]

such that

1. \(r(\gamma_n^{(i)}) \to z \) as \(n \to \infty \) for \(1 \leq i \leq k \);
2. \(s(\gamma_n^{(i)}) = x_n \) for \(1 \leq i \leq k \);
3. if \(1 \leq i < j \leq k \), then \(\gamma_n^{(j)}(\gamma_n^{(i)})^{-1} \to \infty \) as \(n \to \infty \), in the sense that \(\{\gamma_n^{(j)}(\gamma_n^{(i)})^{-1}\} \) admits no convergent subsequence.

Remarks 3.7. (a) Condition (2) in Definition 3.6 is needed so that the composition in (3) makes sense.

(b) Definition 3.6 does not require that \(x_n \to z \), but as in the transformation-group case ([2] Definition 2.2]), this can be arranged by changing the sequence which converges \(k \)-times: replace \(x_n \) by \(r(\gamma_n^{(1)}) \) and replace \(\gamma_n^{(j)} \) by \(\gamma_n^{(j)}(\gamma_n^{(1)})^{-1} \).

(c) Part (3) of Definition 3.6 means \(\gamma_n^{(j)}(\gamma_n^{(i)})^{-1} \) is eventually outside every compact set. In particular, if \(LL^{-1} \) is compact, \(L\gamma_n^{(i)} \cap L\gamma_n^{(j)} = \emptyset \) eventually.

Example 3.8. Let \(G = H \times X \) be a transformation-group groupoid (see Example 3.3) and suppose that \(\{x_n\} \subseteq G^0 \) is a sequence converging 2-times in \(G^0/G \) to \(z \in G^0 \). Then there exist two sequences

\[
\{\gamma_n^{(1)}\} = \{(s_n, y_n)\} \quad \text{and} \quad \{\gamma_n^{(2)}\} = \{(t_n, z_n)\}
\]
in G such that (1) $y_n \to z$ and $z_n \to z$; (2) $s_n^{-1} \cdot y_n = x_n$ and $t_n^{-1} \cdot z_n = x_n$; and (3) $(t_n s_n^{-1} \cdot z_n) \to \infty$ as $n \to \infty$. To see that the sequence $\{x_n\}$ converges 2-times in X/H to z in the sense of [2, §4], consider the two sequences $\{s_n\}$ and $\{t_n\}$ in H.

We have $s_n \cdot x_n \to z$ and $t_n \cdot x_n \to z$ using (1) and (2). Also, since $z_n \to z$ by (1), (3) implies that $t_n s_n^{-1} \to \infty$ in H.

Conversely, if $\{x_n\} \subseteq X$ converges 2-times in X/H to z, then there exist two sequences $\{s_n\}$, $\{t_n\}$ in H such that (1) $s_n \cdot x_n \to z$ and $t_n \cdot x_n \to z$ and (2) $t_n s_n^{-1} \to \infty$. It is easy to check that

\[
\{\gamma_n^{(1)}\} = \{(s_n, s_n \cdot x_n)\} \quad \text{and} \quad \{\gamma_n^{(2)}\} = \{(t_n, t_n \cdot x_n)\}
\]

witness the 2-times convergence in G^0/G of $\{x_n\} \subset G^0$ to $z \in G^0$.

In the transformation-group groupoid of Example [3.4] the sequence $\{x_n = (2^{-2n}, 0, 0)\}$ converges 2-times in G^0/G to $z_0 = (0, 0, 0)$; to see this, just take $s_n = e$ and $t_n = 2n + \pi$ for each n.

In [4] we will prove that a principal groupoid G is integrable if and only if $C^*(G)$ has bounded trace. For the “only if” direction we will need to know that the orbits are locally closed so that [4, Proposition 5.1] applies and $x \mapsto L^x$ induces a homeomorphism of G^0/G onto $C^*(G)^\wedge$; Lemma [3.9] below establishes that if G is integrable, then the orbits are in fact closed, hence locally closed. We will prove the contrapositive of the “if” direction, and a key observation for the proof is Proposition [3.11] if a groupoid fails to be integrable at some z, then there is a non-trivial sequence $\{x_n\}$ which converges k-times in G^0/G to z, for every $k \in \mathbb{N} \setminus \{0\}$.

We thank an anonymous referee for providing the proof of Lemma [3.9].

Lemma 3.9. Let G be a second countable, locally compact, Hausdorff, principal groupoid. If G is integrable, then all orbits are closed.

Proof. Let $\{\alpha_{[x]} : [x] \in G^0/G\}$ be the family of measures from Remark [3.21]. We claim that, for fixed $h \in C_c(G^0/G)$, the function $[x] \mapsto \int_{y \in [x]} h(y) \, d\alpha_{[x]}(y)$ is continuous. To see this, choose $g_n \in C_c(G^0 \times G^0)$ such that, for all $u \in G^0$, the function $g_n(u, \cdot)$ increases to the function $v \mapsto 1$. Then

\[
\int_{y \in [x]} h(y) \, d\alpha_{[x]}(y) = \lim_n \int_{y \in [x]} g_n(x, y) h(y) \, d\alpha_{[x]}(y) = \lim_n \int_{G} f_n(\gamma) \, d\lambda^x(\gamma),
\]

where $f_n(\gamma) = g_n(\pi(\gamma)) h(s(\gamma))$. Since $f_n \in C_c(G)$, the function

\[
x \mapsto \int_{G} f_n(\gamma) \, d\lambda^x(\gamma)
\]

is continuous for each n. Note that $x \mapsto \int_{y \in [x]} g_n(x, y) h(y) \, d\alpha_{[x]}(y)$ is compactly supported for each n. Since limits of uniformly continuous functions are continuous, $x \mapsto \int_{y \in [x]} h(y) \, d\alpha_{[x]}(y)$ is continuous; this function is constant on orbits, which proves the claim.

Fix $x_0 \in G^0$ and suppose that G is integrable. Since G is principal, for each compact subset M of G^0/G, the function $[x] \mapsto \alpha_{[x]}(M)$ is bounded. In particular, for each $h \in C_c(G^0/G)^+$, $\int h \, d\alpha_{[x_0]} \in \mathbb{R}$. Since the support of $\alpha_{[x]}$ is $[x]$, we have

\[
(3.2) \quad \{x_0\} = \bigcap_{h \in C_c(G^0/G)^+} \left\{ x : \int h \, d\alpha_{[x]} \leq \int h \, d\alpha_{[x_0]} \right\}.
\]
But the function \(\{x \mapsto \int_{y \in [x]} h(y) \, d\mu([x]) \} \) is continuous, hence lower semi-continuous, so the left-hand side of \(\text{(3.2)} \) is an intersection of closed sets. Thus \(\{x_0\} \) is closed in \(G^0/G \), and hence \([x_0] \) is closed in \(G^0 \).

The transformation group of \([13]\) Example 1.18 provides an example of a non-integrable free action with closed orbits (by choosing repetition numbers with infinite supremum). Thus there are non-integrable principal groupoids with closed orbits.

Recall that a neighborhood \(W \) of \(G^0 \) is called \textit{conditionally compact} if the sets \(WV \) and \(VW \) are relatively compact for every compact set \(V \) in \(G \). The following lemma will be used repeatedly.

Lemma 3.10. Let \(G \) be a second countable, locally compact, Hausdorff groupoid.

1. Let \(z \in G^0 \) and let \(K \) be a relatively compact neighborhood of \(z \) in \(G \). There exist \(a \in \mathbb{R} \) and a neighborhood \(U \) of \(z \) in \(G^0 \) such that \(0 < a \leq \lambda_x(K) \) for all \(x \in U \).

2. Let \(Q \) be a conditionally compact neighborhood in \(G \). Given any relatively compact neighborhood \(V \) in \(G^0 \) such that \(QV \neq \emptyset \), there exists \(c \in \mathbb{R} \) such that \(c > 0 \) and \(\lambda_x(Q) \leq c \) for all \(x \in V \).

Proof. (1) Suppose not. Let \(\{U_i\} \) be a decreasing sequence of open neighborhoods of \(z \) in \(G^0 \). There exists an increasing sequence \(i_1 < i_2 < \cdots < i_n < \cdots \) and \(x_n \in U_{i_n} \) such that \(\lambda_{x_n}(K) < 1/n \) for each \(n \geq 1 \). Note that \(x_n \to z \).

Let \(f \in C_c(G) \) such that \(0 \leq f \leq 1 \), \(f(z) = 1 \) and \(\text{sup} \ f \subseteq K \); note that \(\int f(\gamma) \, d\lambda_x(\gamma) > 0 \). By the continuity of the Haar system,

\[
\frac{1}{n} > \lambda_{x_n}(K) \geq \int f(\gamma) \, d\lambda_{x_n}(\gamma) = \int f(\gamma) \, d\lambda_x(\gamma) \quad \text{as} \quad n \to \infty,
\]

which is impossible since the left-hand side converges to \(0 \) and \(\int f(\gamma) \, d\lambda_x(\gamma) > 0 \).

(2) Let \(V \) be any relatively compact neighborhood in \(G^0 \) such that \(QV \neq \emptyset \). Let \(f \in C_c(G) \) such that \(0 \leq f \leq 1 \) and \(f \) is identically one on the relatively compact subset \(QV \). The function \(w \mapsto \int f(\gamma) \, d\lambda_w(\gamma) \) is in \(C_c(G^0) \), so it achieves a maximum \(c > 0 \). Then, for \(x \in V \),

\[
\lambda_x(Q) = \lambda_x(Qx) \leq \int f(\gamma) \, d\lambda_x(\gamma) \leq c.
\]

Proposition 3.11. Let \(G \) be a locally compact, Hausdorff groupoid. Let \(z \in G^0 \) and suppose that \(G \) fails to be integrable at \(z \). Then there exists a sequence \(\{x_n\} \) in \(G^0 \) such that \(x_n \to z \), and \(\{x_n\} \) converges \(k \)-times in \(G^0/G \) to \(z \), for every \(k \in \mathbb{N} \setminus \{0\} \). In addition, if \(G \) is second countable, principal and the orbits are locally closed, then \(x_n \neq z \) eventually.

Proof. Suppose the groupoid fails to be integrable at \(z \). Fix \(k \in \mathbb{N} \setminus \{0\} \). Let \(\{U_n\} \) be a decreasing sequence of open relatively compact neighborhoods of \(z \) in \(G^0 \). By Lemma 3.3

\[
\sup_{y \in U_n} \{\lambda^y(s^{-1}(U_n))\} = \infty
\]

for each \(n \). So we can choose a sequence \(\{x_n\} \) such that \(x_n \in U_n \) and \(\lambda^{x_n}(s^{-1}(U_n)) > n \). Note that \(x_n \to z \) as \(n \to \infty \).

Let \(Q \) be an open symmetric conditionally compact neighborhood of \(z \) in \(G \) and let \(V \) be an open relatively compact neighborhood of \(z \) in \(G^0 \). By Lemma 3.10(2)
there exists $c > 0$ such that $\lambda_v(Q^2) \leq c$ whenever $v \in V$. Choose n_0 such that $n_0 > (k-1)c$ and $U_{n_0} \subseteq V$. Temporarily fix $n > n_0$. Set $\gamma^{(1)}_n = x_n$. For $k \geq 2$ choose $k-1$ elements $\gamma^{(2)}_n, \ldots, \gamma^{(k)}_n$ as follows. Note that since $x_n = r(\gamma^{(1)}_n) \in V$, we have

$$\lambda_{x_n}(r^{-1}(U_n) \setminus Q^2 \gamma^{(1)}_n) \geq \lambda_{x_n}(r^{-1}(U_n)) - \lambda_{x_n}(Q^2 \gamma^{(1)}_n) = \lambda_{x_n}(r^{-1}(U_n) \cap s^{-1}\{x_n\}) - \lambda_{r(\gamma^{(1)}_n)}(Q^2) > (k-1)c - c = (k-2)c \geq 0.$$

So there exists $\gamma^{(2)}_n \in (r^{-1}(U_n) \cap s^{-1}\{x_n\}) \setminus Q^2 \gamma^{(1)}_n$, note that $r(\gamma^{(2)}_n) \in U_n \subseteq V$ and $s(\gamma^{(2)}_n) = x_n$. Next,

$$\lambda_{x_n}(r^{-1}(U_n) \setminus (Q^2 \gamma^{(1)}_n \cup Q^2 \gamma^{(2)}_n)) \geq \lambda_{x_n}(r^{-1}(U_n)) - \lambda_{x_n}(Q^2 \gamma^{(1)}_n) - \lambda_{x_n}(Q^2 \gamma^{(2)}_n) \geq \lambda_{x_n}(r^{-1}(U_n) \cap s^{-1}\{x_n\}) - \lambda_{r(\gamma^{(1)}_n)}(Q^2) - \lambda_{r(\gamma^{(2)}_n)}(Q^2) > (k-3)c \geq 0.$$

Continue until $\gamma^{(1)}_n, \ldots, \gamma^{(k)}_n$ have been chosen in this way.

If $n > n_0$, then by construction $s(\gamma^{(i)}_n) = x_n$ and $r(\gamma^{(i)}_n) \in U_n$ for each n; so $r(\gamma^{(i)}_n) \to z$ as $n \to \infty$ for $1 \leq i \leq k$. Moreover $\gamma^{(j)}_n(\gamma^{(i)}_n)^{-1} \notin Q^2$ for $1 \leq i < j \leq k$ and $n > n_0$. To see that $\{\gamma^{(j)}_n(\gamma^{(i)}_n)^{-1}\}$ tends to infinity, suppose that it doesn’t. Then, $\gamma^{(j)}_n(\gamma^{(i)}_n)^{-1} \to \gamma$ by passing to a subsequence and relabelling. But then $s(\gamma^{(j)}_n(\gamma^{(i)}_n)^{-1}) = r(\gamma^{(i)}_n) \to z$ and $r(\gamma^{(j)}_n(\gamma^{(i)}_n)^{-1}) = r(\gamma^{(j)}_n) \to z$ implies $\gamma = z$, which is impossible because $\gamma^{(j)}_n(\gamma^{(i)}_n)^{-1} \notin Q^2$ and Q contains G^0. Hence $\{x_n\}$ converges k-times in G^0/G to z.

We claim that if G is second countable and principal, then $x_n \neq z$ eventually. To see this, suppose $x_n = z$ frequently. Then $\lambda^z(s^{-1}(U_n)) > n$ frequently, and hence

$$\lambda^z(s^{-1}(U_1)) = \infty.$$

The orbits are locally closed and G is second countable and principal, so the source map restricts to a homeomorphism $s: r^{-1}(\{z\}) \to [z]$. Since U_1 is relatively compact, $s^{-1}(\{z\} \cap U_1)$ is relatively compact in $r^{-1}(\{z\})$ because $s: r^{-1}(\{z\}) \to [z]$ is a homeomorphism. But now $\lambda^z(s^{-1}(\{z\} \cap U_1)) = \lambda^z(s^{-1}(U_1)) < \infty$, contradicting (3.3).

4. Integrability of G and Trace Properties of $C^*(G)$

Proposition 4.1. Let G be a second-countable, locally compact, Hausdorff principal groupoid. If $C^*(G)$ has bounded trace, then G is integrable.

The proof of Proposition 4.1 is based on that of [8] Theorem 2.3. There, Muhly and Williams choose a sequence $\{x_n\} \subseteq G^0$ with $x_n \to z$ which witnesses the failure of the groupoid to be proper. They then carefully construct a function $f \in C_c(G)$ to obtain an element d of the Pedersen ideal of $C^*(G)$ such that $\text{tr}(L^2(d))$ does not converge to $\text{tr}(L^2(d))$. Since the Pedersen ideal is the minimal dense ideal [9] Theorem 5.6.1, the ideal of continuous-trace elements cannot be dense, so $C^*(G)$ does not have continuous trace. We adopt the same strategy, use exactly the
same function \(f \), but adapt the proof of [8] Theorem 2.3 using ideas from [6] Proposition 3.5).

Proof of Proposition 4.1. Fix \(M \in \mathbb{N} \setminus \{0\} \). We will show that there is an element \(d \) of the Pedersen ideal of \(C^*(G) \), a sequence of representations \(\{L^x_n\} \) and \(n_0 > 0 \) such that \(\text{tr}(L^x_n(d)) > M \) whenever \(n > n_0 \). Since \(M \) is arbitrary, \(C^*(G) \) cannot have bounded trace.

If \(G \) is not integrable, then the integrability fails at some \(z \in G^0 \) by Lemma 3.5 if the orbits are not closed, then \(C^*(G) \) cannot be CCR by [4] Theorem 4.1 and hence cannot have bounded trace. So from now on we may assume that the orbits are closed. By Proposition 3.1.11 there exists a sequence \(\{x_n\} \) such that \(x_n \not\to z \), \(x_n \to z \), and \(\{x_n\} \) converges \(k \)-times in \(G^0/G \) to \(z \), for every \(k \in \mathbb{N} \setminus \{0\} \).

Since we will use exactly the same function \(f \) that was used in the proof of [8] Theorem 2.3, our first task is to briefly outline its construction. Fix a function \(g \in C_c(G^0) \) such that \(0 \leq g \leq 1 \) and \(g \) is identically one on a neighborhood \(U \) of \(z \). Let \(N = \text{supp} g \) and let

\[
F^N_z := s^{-1}(\{z\}) \cap r^{-1}(z \cap N) = s^{-1}(\{z\}) \cap r^{-1}(N),
\]

\[
F^N_N := r^{-1}(\{z\}) \cap s^{-1}(z \cap N) = r^{-1}(\{z\}) \cap s^{-1}(N).
\]

There exist symmetric, open, conditionally compact neighborhoods \(W_0 \) and \(W_1 \) in \(G \) such that

\[
G^0 \subseteq W_0 \subseteq \overline{W_0} \subseteq W_1 \quad \text{and} \quad F^N_N \cup F^N_z \subseteq W_0.
\]

Thus \(\overline{W^7}z \setminus W_0 z \subseteq r^{-1}(G^0 \setminus N) \). (The reason for using \(\overline{W^7} \) becomes clear at (4.4) below.) By a compactness argument, there exist open, symmetric, relatively compact neighborhoods \(V_0 \subseteq G^0 \) and \(V_1 \) of \(z \) in \(G \) such that \(V_0 \subset V_1 \) and

\[
(4.1) \quad \overline{W^7}V_0 \setminus W_0 V_0 \subseteq r^{-1}(G^0 \setminus N).
\]

Now note that if \(\gamma \in \overline{W^7}V_1 \setminus W_0 V_0 W_0 \), then \(r(\gamma) \in r(\overline{W^7}V_0 \setminus W_0 V_0) \subseteq G^0 \setminus N \). It follows that the function \(g^{(1)} : G \to [0,1] \) defined by

\[
g^{(1)}(\gamma) = \begin{cases} g(r(\gamma)) & \text{if } \gamma \in \overline{W^7}V_1 \setminus W^7, \\ 0 & \text{if } \gamma \not\in W_0 V_0 W_0 \end{cases}
\]

is well-defined and continuous with compact support in \(G \). By construction

\[
(W_0 V_0 W_0)^2 = W_0 V_0 W^2_0 W_0 \subseteq W^4_0 W^4_0 \subseteq \overline{W^4_0} \overline{W^4_0} \subseteq W^4_1 V^4_1 \subseteq \overline{W^4_1} \overline{W^4_1}.
\]

So there exists a function \(b \in C_c(G) \) such that \(0 \leq b \leq 1 \), \(b \) is identically one on \(W_0 V_0 W^2_0 V_0 \) and it is identically zero on the complement of \(\overline{W^7}V_1 \setminus W^7 \). Further, we can replace \(b \) with \((b + b^*)/2 \) to ensure that \(b \) is self-adjoint. Set

\[
f(\gamma) = g(\gamma)g(s(\gamma))b(\gamma);
\]

note that \(f \in C_c(G) \) is self-adjoint.
For $\xi \in L^2(G, \lambda_n)$ and $\gamma \in G$ we have

$$L^{\alpha}(f)\xi(\gamma) = \int f(\gamma\alpha)\xi(\alpha^{-1}) \, d\lambda^\alpha(\alpha)$$

$$= \int g(r(\gamma))g(s(\alpha))b(\gamma\alpha)\xi(\alpha^{-1}) \, d\lambda^\alpha(\alpha)$$

$$= g(r(\gamma)) \int g(s(\alpha))b(\gamma\alpha)\xi(\alpha^{-1}) \, d\lambda^\alpha(\alpha)$$

$$(4.2)$$

$$= g(r(\gamma)) \int g(r(\alpha))b(\gamma\alpha^{-1})\xi(\alpha) \, d\lambda_n(\alpha).$$

By [8, Lemma 2.8], $g^{(1)}$ is an eigenvector for $L^x(f)$ with eigenvalue

$$\mu_{xn}^{(1)} = \int g(r(\alpha))g^{(1)}(\alpha) \, d\lambda_{xn}(\alpha) = \int_{\gamma V^\alpha_{n0}} g(r(\alpha)) \, d\lambda_{xn}(\alpha).$$

By [8, Lemma 2.9], there exist an open $V_2 \subseteq V_0$ and a conditionally compact neighborhood Y of G^0 so that $Y \subseteq W_0$ and if $v \in V_2$, then $r(Yv) \subseteq U$. Notice that YV_2Y is a relatively compact subset of $W_0V_2W_0$. By Lemma [8,10](1) there exist an open neighborhood V_3 of z and $a > 0$ such that

$$(4.3) \quad \lambda_n(YV_2Y) \geq a \text{ whenever } v \in V_3.$$

Now, if $\alpha \in YV_2Y$, then $r(\alpha) \in U$ and hence $g(r(\alpha)) = 1$; it follows that

$$\mu_{xn}^{(1)} \geq \int_{YV_2Y} g(r(\alpha))^2 \, d\lambda_{xn}(\alpha) = \lambda_{xn}(YV_2Y) \geq a > 0$$

whenever $x_n \in V_3$.

So far our set-up is the one from [8]. Now choose $l \in N \setminus \{0\}$ such that $la^2 > M$. (Note that a is independent of l!) The sequence $\{x_n\}$ converges k-times in G/G^0 to z for every $k \in N \setminus \{0\}$, so it certainly converges l times. So there exist l sequences

$$\{\gamma^{(1)}_n\}, \{\gamma^{(2)}_n\}, \ldots, \{\gamma^{(l)}_n\} \subseteq G$$

such that

1. $r(\alpha) \to z$ as $n \to \infty$ for $1 \leq i \leq l$;
2. $s(\alpha) = x_n$ for $1 \leq i \leq k$;
3. if $1 \leq i < j \leq l$, then $\gamma^{(i)}_n \gamma^{(i)}_n^{-1} \to \infty$.

Moreover, by construction (see Proposition [8,11]), we may take $\gamma^{(1)}_n = x_n$. Temporarily fix n. Set $y^{(1)}_n := g^{(1)}$, and for $2 \leq j \leq l$ set

$$g^{(j)}_n(\gamma) := \begin{cases} g^{(1)}(\gamma \gamma^{(1)}_n)^{-1}, & \text{if } s(\gamma) = s(\gamma^{(1)}_n); \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} g(r(\gamma)), & \text{if } \gamma \in W_0V_1W_1^{-1} \gamma^{(1)}_n; \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} g(r(\gamma)), & \text{if } \gamma \in W_0V_1W_1^{-1} \gamma^{(1)}_n; \\ 0, & \text{if } \gamma \notin W_0V_0W_0 \gamma^{(1)}_n. \end{cases}$$

Each $g^{(j)}_n$ ($1 \leq j \leq l$) is a well-defined function in $C_c(G)$ with support contained in $W_0V_0W_0 \gamma^{(j)}_n$. For $1 \leq i < j \leq l$, $\gamma^{(j)}_n \gamma^{(i)}_n^{-1} \notin (W_0V_0W_0)^2$ eventually, so there
exists \(n_0 > 0 \) such that, for every \(0 \leq i, j \leq l, \ i \neq j \),

\[
W_0V_0\gamma_n^{(j)} \cap W_0V_0\gamma_n^{(i)} = \emptyset
\]

whenever \(n > n_0 \).

We now prove a generalization of [8, Lemma 2.8] which, together with (4.2),
immediately implies that each \(g_n^{(j)} \) is an eigenvector of \(L^n(f) \) for \(1 \leq j \leq l \).

Lemma 4.2. With the choices made above, for all \(\alpha, \gamma \in G \) and \(1 \leq j \leq l \),

\[
g(r(\gamma))g(r(\alpha))b(\gamma\alpha^{-1})g_n^{(j)}(\alpha) = g_n^{(j)}(\gamma)g(r(\alpha))g_n^{(j)}(\alpha).
\]

Proof. If \(\alpha \notin W_0V_0\gamma_n^{(j)} \), then both sides are zero. So we may assume throughout

that \(\alpha \in W_0V_0\gamma_n^{(j)} \).

If \(\gamma \in W_0V_0\gamma_n^{(j)} \), then \(g_n^{(j)}(\gamma) = g(r(\gamma)) \) and \(\gamma\alpha^{-1} \in W_0V_0W_0W_0V_0 \), so

\[
b(\gamma\alpha^{-1}) = 1
\]

and both sides agree.

If \(\gamma \notin W_1V_1W_1\gamma_n^{(j)} \), then \(g_n^{(j)}(\gamma) = 0 \), so both sides are zero.

Finally, if \(\gamma \notin W_1V_1W_1\gamma_n^{(j)} \), then \(g_n^{(j)}(\gamma) = 0 \), so both right-hand sides are zero.

On the other hand, if \(\gamma\alpha^{-1} \in W_1V_1W_1(= \text{supp } b) \), then

\[
(4.4) \quad \gamma \in W_1V_1W_1\gamma_n^{(j)} \subseteq W_1V_1W_1\gamma_n^{(j)}.
\]

So \(\gamma \notin W_1V_1W_1\gamma_n^{(j)} \) implies \(\gamma\alpha^{-1} \notin \text{supp } b \), so the left-hand side is zero as well. \(\square \)

Let \(\mu_n^{(j)} \) be the eigenvalue corresponding to the eigenvector \(g_n^{(j)} \). Using (4.3),

\[
\mu_n^{(j)} = \int_{W_0V_0\gamma_n^{(j)}} g(r(\alpha))^2 d\lambda x_n(\alpha) \geq \lambda x_n(YV_2Y \gamma_n^{(j)}) = \lambda_{r(\gamma_n^{(j)})}(YV_2Y) \geq a
\]

whenever \(r(\gamma_n^{(j)}) \in V_3 \). Choose \(n_1 > n_0 \) such that \(n > n_1 \) implies \(x_n \in V_3 \) and

\(r(\gamma_n^{(j)}) \in V_3 \) for \(1 \leq j \leq l \). Then \(L^n(f * f) \) is a positive compact operator with

\(l \) eigenvalues \(\mu_n^{(j)} \geq a^2 \) for \(1 \leq j \leq l \). To push \(f * f \) into the Pedersen ideal, let \(r \in C_c(0, \infty) \) be any function

satisfying

\[
r(t) = \begin{cases}
0, & \text{if } t < \frac{a^2}{3}; \\
2t - \frac{2a^2}{3}, & \text{if } \frac{a^2}{3} \leq t < \frac{2a^2}{3}; \\
t, & \text{if } \frac{2a^2}{3} \leq t \leq \|f * f\|.
\end{cases}
\]

Set \(d := r(f * f) \). Now \(d \) is a positive element of the Pedersen ideal of \(C^*(G) \) with

\(\text{tr}(L^n(d)) \geq la^2 > M \) whenever \(n > n_1 \). Since \(M \) was arbitrary, \(L^n \mapsto \text{tr}(L^n(d)) \) is

unbounded on \(C^*(G) \). Thus \(C^*(G) \) does not have bounded trace. \(\square \)

Proposition 4.3. Suppose \(G \) is a second countable, locally compact, Hausdorff, principal groupoid.
If \(G \) is integrable, then \(C^*(G) \) has bounded trace.

Proof. Since \(G \) is principal and integrable, the orbits are closed by Lemma [3,8] and

\(x \mapsto L^n \) induces a homeomorphism of \(G^0/G \) onto \(C^*(G) \) by [3, Proposition 5.1].

To show that \(C^*(G) \) has bounded trace, it suffices to see that for a fixed \(u \in G^0 \)

and all \(f \in C_c(G) \), \(\text{tr}(L^n(f * f)) \) is bounded independent of \(u \).

Fix \(u \in G^0 \) and let \(\xi \in L^2(G, \lambda_u) \). Since

\[
L^n(f)\xi(\gamma) = \int f(\gamma\alpha^{-1})\xi(\alpha) \, d\lambda_u(\alpha),
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Suppose \(G \) is a second countable, locally compact, Hausdorff, principal groupoid. Then \(G \) has bounded trace.

References

Department of Mathematical Sciences, Susquehanna University, Selinsgrove, Pennsylvania 17870
E-mail address: clarklisa@susqu.edu

School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia
E-mail address: astrid@unsw.edu.au