THE STASHEFF MODEL OF A SIMPLY-CONNECTED MANIFOLD AND THE STRING BRACKET

A. LAZAREV

(Communicated by Paul Goerss)

Abstract. We revisit Stasheff’s construction of a minimal Lie-Quillen model of a simply-connected closed manifold M using the language of infinity-algebras. This model is then used to construct a graded Lie bracket on the equivariant homology of the free loop space of M minus a point similar to the Chas-Sullivan string bracket.

1. Introduction

In this paper we construct a string-type bracket on the S^1-equivariant reduced homology of the loop space of a simply-connected closed manifold M with a puncture. In fact, we only need M to be a rational Poincaré duality space of dimension n; removing a point corresponds to passing to the $n-1$-skeleton of M. It seems likely that our construction is compatible with that of Sullivan and Chas [4] under the inclusion $\hat{M} := M \setminus \text{point} \hookrightarrow M$; however this issue is not considered here.

We found it convenient to use the language of C_∞- and L_∞-algebras. In rational homotopy theory these algebras go under the name of Quillen and Sullivan models, respectively. More precisely, a minimal Sullivan model of a rational space is a minimal L_∞-algebra of a special sort, namely one with only finitely many higher brackets. Similarly, in the simply-connected case a (minimal) Quillen model is a (minimal) C_∞-algebra with only finitely many higher products.

In the general case of a nilpotent space we introduce the notion of a Quillen minimal model as a minimal C_∞ model of the corresponding Sullivan algebra. This notion differs slightly from that introduced in [14] in that there is potentially room for infinitely many higher products. The existence of a conventional minimal Quillen model for a nilpotent space is unknown but our notion provides a perfectly adequate substitute and could be interesting in its own right. However a real challenge would be to construct a C_∞ minimal model encoding a non-nilpotent rational homotopy type. In this connection note that, as shown by Neisendorfer [14], a non-nilpotent differential graded Lie algebra (e.g. a semisimple Lie algebra sitting in degree zero) in general does not admit a conventional minimal model.

Our main tool is the notion of a symplectic infinity-algebra, a.k.a. infinity-algebra with an invariant inner product introduced by Kontsevich [10] and studied in detail in [8], [12]. This is simply a homotopy invariant version of a (graded) Frobenius...
algebra. Since cohomology rings of Poincaré duality spaces are graded Frobenius algebras, the appearance of symplectic infinity-algebras is not unexpected.

Consider a minimal Quillen model of a simply-connected manifold M. Recall that its underlying space is $\overline{\mathcal{P}}(M)$, the reduced homology of M; thus it does not support the Poincaré duality form. To restore it, one could either add a unit, which results in what we call a contractible Quillen model of M, or remove the top class, which corresponds to making a puncture in M. Using the results of [8], we show that there exists a contractible Quillen model of M that is a symplectic C_∞-algebra. Similarly there is a Quillen model for \mathcal{M} that is a symplectic C_∞-algebra. The latter was essentially constructed by Stasheff in [15] and so we call it a Stasheff model. Note that symplectic A_∞-algebras (or more generally categories) were also studied in [5] and [12] from the point of view of topological conformal field theory.

To construct the string bracket on the equivariant homology of LM, the loop space on M, we use the connection of this homology with cyclic cohomology of the cochain algebra of M; cf. [7].

A natural question is whether our construction gives rise to string topology operations on the $H_*(LM)$. The answer appears to be no, due to the fact that the Hochschild and naive Hochschild cohomology of the nonunital algebra $\overline{\mathcal{P}}(M)$ could be very different. Note that the cyclic and naive cyclic theories are essentially the same (cf. [13]), which makes possible the main construction of the present paper.

1.1. Notation and conventions. We work over a fixed field k of characteristic zero; all homology and cohomology groups are taken with coefficients in k. Whenever we talk about differential graded models of topological spaces, k is understood to be the field of rational numbers. The terms ‘differential graded algebra’ and ‘differential graded Lie algebra’ will be abbreviated as ‘dga’ and ‘dgla’, respectively. The k-dual to a graded vector space V will be denoted by V^* whilst the (homological or cohomological) grading will be indicated by an upper or lower bullet •. We will denote by TV and LV, respectively, the tensor algebra and the free Lie algebra on a graded vector space V. Their completions will be denoted by \hat{TV} and \hat{LV}, respectively. The spaces of noncommutative power series or Lie series in indeterminates x_i will be denoted by $k\langle\langle x_1, x_2, \ldots\rangle\rangle = k\langle\langle x\rangle\rangle$ and by $k\{\{x_1, x_2, \ldots\}\} = k\{\{x\}\}$, respectively. The suspension of a graded vector space V^* is defined as $\Sigma V^* := V^{*+1}$.

For a graded space or an algebra V supplied with an augmentation $V \to k$ we denote by V_+ the kernel of the augmentation.

The $n-1$-skeleton of an n-dimensional rational Poincaré duality space M will be denoted by M.

2. Infinity-algebras and rational homotopy theory

2.1. Generalities on infinity-algebras. Recall that an A_∞-algebra structure on a graded vector space V is a continuous derivation m of the completed tensor algebra $\overline{\Sigma V}^*$ of homological degree -1, having square zero and vanishing at zero. Let us choose a basis $\{t_i\}$ in ΣV^*. Any element in $\overline{\Sigma V}^*$ is a noncommutative power series $f(t_1, t_2, \ldots)$ in the indeterminates t_i. Then we could write m as $m = m_1 + m_2 + \ldots$ where $m_i = \sum_i f_i^j(t) \partial_{t_j}$ where f_i^j is a (possibly infinite) linear combination of monomials having wordlength l. The condition $m_2 = 0$ implies that $m_1^2 = 0$ and so m_1 determines a differential on V. If $m_1 = 0$, i.e. if the differential
m is decomposable, we say that the A_∞-structure m is minimal. In this case the quadratic part m_2 of m determines an associative multiplication on V.

Next, a (continuous) derivation of $L(\Sigma V^*)$ is a C_∞-structure on V. It is clear that a C_∞-algebra is a special case of an A_∞-algebra. The quadratic term m_2 of a minimal C_∞-algebra determines a commutative product on V.

Given two A_∞-structures (C_∞-structures) m^V and m^U on V and U, an A_∞-morphism (C_∞-morphism) $V \to U$ is a continuous algebra homomorphism $\phi : T\Sigma U^* \to T\Sigma V^*$ ($\phi : L\Sigma U^* \to L\Sigma V^*$) for which $\phi \circ m^U = m^V \circ V$. Such a map ϕ could always be written as $\phi = \phi_1 + \phi_2 + \ldots$ where ϕ_i is a morphism raising the wordlength (or bracket length) by $i - 1$. In particular, ϕ_1 could be thought of as a linear map $\Sigma U^* \to \Sigma V^*$. We say that ϕ is a weak equivalence if ϕ_1 determines a quasi-isomorphism between ΣU^* and ΣV^* considered as complexes with differentials m_1^U and m_1^V. A weak equivalence between minimal infinity-algebras is always an isomorphism.

Given a dga V, its cobar-construction $\hat{T}\Sigma V^*$ could be considered as an A_∞-algebra of a special sort. Indeed, the differential m on $\hat{T}\Sigma V^*$ is a sum of m_1 and m_2 which correspond to the differential and product on V, respectively. If V is commutative, then $\hat{T}\Sigma V^*$ is in fact a Hopf dga which gives rise to a C_∞-algebra after taking the primitives. Kadeishvili’s theorem states that any A_∞-algebra admits a minimal model, i.e. a minimal A_∞-algebra weakly equivalent to it. The analogue of this theorem is also valid in the C_∞-case; cf. [8].

2.2. Adjoining a unit to an infinity-algebra

An A_∞-algebra V is called unital if there exists an element τ of degree -1 in ΣV^* which could be extended to a basis τ, t so that in this basis m has a form

$$m = A(t)\partial_\tau + \sum_i B(t)\partial_{\tau_i} + \text{ad } \tau - \tau^2\partial_\tau.$$

Note that in the dual basis of V the element τ corresponds to the unit element. Since $\tau^2 = 1/2[\tau, \tau]$, this definition also makes sense for C_∞-algebras.

Remark 2.1. For a unital A_∞-algebra $(\hat{T}\Sigma V^*, m)$ the differential m is always exact; cf. for example, [8], Lemma 6.9. This corresponds to the well-known fact that a (co)bar-construction of a unital associative algebra is contractible. A similar remark applies to unital C_∞-algebras as well.

Suppose that V is a unital augmented dga. In other words A admits a decomposition $V = k \cdot 1 \oplus V_+$ where V_+ is a dga without a unit; alternatively one can say that V is obtained from V_+ by adjoining a unit. Consider an A_∞ minimal model of V_+; choosing a basis in $H^*(V_+)$ and the corresponding dual basis t_τ in $H^*(\Sigma V^*)$, we could assume that this minimal model has the form $(k\langle t \rangle, m_+)$ where m_+ is a derivation of $k\langle t \rangle$ of degree -1 with vanishing constant and linear terms. Then we have the following result.

Proposition 2.2. Under the above assumptions the derivation $m := m_+ + \text{ad } \tau - \tau^2\partial_\tau$ of $k:\langle \tau, t \rangle$ is a minimal unital A_∞-model of V.

Proof. Choose a basis $\{x_i\}$ in V_+ and the corresponding dual basis $\{x'_i\}$ in ΣV^*. Then the cobar-construction $\hat{T}\Sigma V^*_+$ of V_+ could be identified with the ring of non-commutative power series $k\langle \langle x' \rangle \rangle$. Denote by m' the differential in $k\langle \langle x' \rangle \rangle$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Let Proposition 2.4.

is a unital A-algebra or commutative dga’s. Later on, whenever we talk about minimal models of noncommutative power series $k\langle x, \tau \rangle$ with the differential $m' = \tau^2 \partial + \text{ad} \tau'$.

Since $k\langle t \rangle$ endowed with the differential m_+ is a minimal model of V_+, there is a (continuous) map $f : k\langle t \rangle \to k\langle x' \rangle$ which determines a quasi-isomorphism $\Sigma H^\bullet(V_+) \to \Sigma V_+$. Then f can be extended to the map of dga’s

$$\tilde{f} : k\langle \tau, t \rangle \to k\langle \tau', x' \rangle$$

by letting $\tilde{f}(\tau) = \tau'$. It is clear that \tilde{f} determines a quasi-isomorphism $\Sigma H^\bullet(V^\bullet) \to \Sigma V^\bullet$ as required.

We now formulate the analogue of this result in the C_∞-context. Let V be a unital augmented commutative dga $V = k \oplus V_+$. Consider a C_∞ minimal model of V_+; choosing a basis in $H^\bullet(V_+)$ and the corresponding dual basis t_i in ΣV^\bullet, we can assume that this minimal model is the pair $(k\{\{t\}\}, m_+)$ where m_+ is a derivation of $k\{\{t\}\}$ of degree -1 with vanishing linear term. Note that a C_∞ minimal model of a commutative dga could be obtained from its A_∞ minimal model by taking the primitive elements of the latter. Also note that $\tau^2 \partial \tau$ is a Lie derivation: $\tau^2 \partial \tau = \frac{1}{2}[\tau, \tau] \partial \tau$. With these remarks we have the following corollary.

Corollary 2.3. Under the above assumptions the derivation $m := m_+ + \text{ad} \tau - \frac{1}{2}[\tau, \tau] \partial \tau$ of $k\{\{\tau, t\}\}$ is a C_∞ minimal model of V.

Thus, our results provide minimal canonical unital models for augmented (associative or commutative) dga’s. Later on, whenever we talk about minimal models of augmented (commutative) dga’s, we will mean these canonical models.

Next we consider morphisms. Recall that an A_∞-morphisms $\phi : k\langle \langle \tau, t \rangle \rangle \to k\langle \langle \tau', t' \rangle \rangle$ between two unital A_∞-algebras is called unital if it has the form

$$\phi(\tau) = \tau' + A(t); \quad \phi(t_i) = B_i(t).$$

A C_∞-morphism between two C_∞-algebras is called unital if the corresponding A_∞-morphism is unital.

We have the following obvious result.

Proposition 2.4. Let $V = k \oplus V_+$ and $U = k \oplus U_+$ be augmented A_∞-algebras, and let $k\langle \langle \tau, t \rangle \rangle$ and $k\langle \langle \tau', t' \rangle \rangle$ be their minimal unital models. Then any A_∞-morphism $V_+ \to U_+$ determines a unital A_∞-morphism $k\langle \langle \tau', t' \rangle \rangle \to k\langle \langle \tau, t \rangle \rangle$.

Similarly if $V = k \oplus V_+$ and $U = k \oplus U_+$ are augmented C_∞-algebras and $k\{\{\tau, t\}\}$ and $k\{\{\tau', t'\}\}$ are their minimal unital models, then any C_∞-morphism $V_+ \to U_+$ determines a unital C_∞-morphism $k\{\{\tau', t'\}\} \to k\{\{\tau, t\}\}$.

In view of the above results it makes sense to define the adjunction of a unit to an arbitrary A_∞- or C_∞-algebra as follows (this result also appears in [12]).

Proposition 2.5. Let V be an A_∞-algebra determined by the derivation $m : k\langle x \rangle \to k\langle x \rangle$. Then the derivation \hat{m} of the algebra $k\langle x, \tau \rangle$ determined by the formula

$$\hat{m} = m + \text{ad} \tau - \tau^2 \partial \tau$$

is a unital A_∞-structure on $\hat{V} := k \oplus V$. We will call \hat{V} the A_∞-algebra obtained from V by adjoining a unit.
It is clear that the above proposition-definition remains valid in the \(C_\infty \)-context and is independent of the choice of a basis. Moreover the correspondence \(V \to \check{V} \) is a functor from the category of \(A_\infty \)-algebras (\(C_\infty \)-algebras) to the category of unital \(A_\infty \)-algebras (\(C_\infty \)-algebras, respectively).

2.3. \(C_\infty \)-models for rational homotopy types. Let \(M \) be a nilpotent CW-complex of finite type and let \(V := A^\bullet(M) \) be the minimal Sullivan algebra of \(M \). Recall that \(V \) is a free graded commutative algebra with a decomposable differential \(d \) (i.e. \(d(V_+) \subset V_+ \cdot V_+ \)) that is multiplicatively quasi-isomorphic to the Sullivan-de Rham algebra of \(M \); cf. \([1]\). A Quillen model of \(M \) can be identified with the space of primitives inside \(T\Sigma V^+_\infty \), the cobar-construction of \(V \); it inherits the differential from \(T\Sigma V^+_\infty \) and becomes a dga.

Definition 2.6. A minimal Quillen model of \(M \) is a \(C_\infty \) minimal model of the commutative dga \(V_+ = A^\bullet(M)_+ \). It will be defined by \(\mathcal{L}(M) \).

Definition 2.7. A contractible Quillen minimal model \(\check{L}(M) \) is a unital \(C_\infty \) minimal model of \(A^\bullet(M) \).

Remark 2.8. Clearly a contractible Quillen minimal model \(\check{L}(M) \) is obtained from a nonunital \(C_\infty \)-algebra \(\check{L}(M) \) by the procedure of adjoining a unit as discussed in the previous subsection. It is important to emphasize that the contractibility of \(\check{L}(M) \) does not imply the contractibility of the topological space \(M \).

From now on we will only consider the simply-connected case. The next result shows that \(\mathcal{L}(M) \) and \(\check{L}(M) \) faithfully record the rational homotopy type of \(M \).

Theorem 2.9. The following conditions are equivalent:

1. two simply-connected spaces \(M \) and \(N \) of finite type are rationally equivalent;
2. \(\mathcal{L}(M) \) and \(\mathcal{L}(N) \) are isomorphic;
3. \(\check{L}(M) \) and \(\check{L}(N) \) are isomorphic through a unital \(C_\infty \)-isomorphism.

Proof. The equivalence of (1) and (2) is well-known; cf. \([14]\) or \([3]\). The implication (2) \(\Rightarrow \) (3) is Proposition \([2,4]\). For (3) \(\Rightarrow \) (2) let

\[\phi : \check{L}(N) = k\{\{\tau', t'\}\} \to k\{\{\tau, t\}\} = \check{L}(M) \]

be a unital \(C_\infty \)-isomorphism. Then \(\phi(\tau') = \tau + A(t) \), but since \(A(t) \) has degree \(\geq 0 \) and \(|\tau| = |\tau'| = -1 \), we conclude that \(A(t) = 0 \), and so \(\phi \) restricts to an isomorphism between \(\mathcal{L}(M) \) and \(\mathcal{L}(N) \).

\[\square \]

3. Cyclic cohomology of infinity-algebras

Definition 3.1. Let \(V \) be an \(A_\infty \)-algebra and consider \(C^\bullet(V) := \Sigma(T\Sigma V^\bullet)/[,] \), the (suspension of the) quotient of the reduced completed tensor algebra by the space of all graded commutators. The derivation \(m \) determines a differential on \(C^\bullet(V) \) making it into a complex. This complex will be called the cyclic complex of the \(A_\infty \)-algebra \(V \) and its cohomology \(HC^\bullet(V) \) will be called the cyclic cohomology of \(A \).

Remark 3.2. In more familiar terms the cyclic complex of \(A \) is the complex of the form

\[V^\bullet \to (V \otimes V)^\bullet/[,] \to \ldots \to [V^\bullet]^{\otimes n}/[,] \ldots \]
where the differential is determined by the A_∞-structure m and reduces to the familiar Connes complex (cf. [13]) if one disregards the higher products $m_i, i > 2$. Note that the quotient $[V^*]_n / [\cdot]$ is naturally identified with $[V^*]_n$, the space of coinvariants with respect to the action of the cyclic group Z_n. The complex $C^*_A(V)$ is contravariantly functorial with respect to A_∞-morphisms.

Proposition 3.3. A weak equivalence $V \to U$ between two A_∞-algebras induces an isomorphism $HC^*(U) \to HC^*(V)$.

Proof. The complexes $C^*_A(V)$ and $C^*_A(U)$ have filtrations induced by wordlength in the tensor algebras $(\hat{T}V^*)_+$ and $(\hat{T}U^*)_+$. Since the functor of Z_n-coinvariants is exact, we conclude that the induced map on the E_1-terms of the corresponding spectral sequences is an isomorphism.

Now consider the A_∞-algebra \hat{V} obtained from V by adjoining a unit. Then V is an A_∞-retract of \hat{V}, which implies that $HC^*(V)$ is a direct summand in $HC^*(\hat{V})$. More precisely, we have the following result.

Proposition 3.4. There is a canonical isomorphism $HC^*(\hat{V}) \cong HC^*(V) \oplus HC^*(k)$.

Proof. This result is well-known in the case when V is a dga (see [13] for the proof in the ungraded case). Let U be a dga which is A_∞-equivalent to V. We have a commutative square of A_∞-algebras whose horizontal maps are weak equivalences and therefore they induce isomorphisms in cyclic cohomology:

\[
\begin{array}{ccc}
V & \longrightarrow & U \\
\downarrow & & \downarrow \\
\hat{V} & \longrightarrow & \hat{U}.
\end{array}
\]

Then the desired isomorphism for V follows from the corresponding result for U. □

4. POINCARÉ DUALITY SPACES AND SYMPLECTIC INFINITY-ALGEBRAS

We start by recalling the notion of a symplectic (or cyclic) infinity-algebra. More details could be found in [8].

Let $(\hat{T}V^*, m)$ be an A_∞-algebra. We assume that V is finite dimensional over k and that A possesses a nondegenerate graded symmetric scalar product $\langle \cdot, \cdot \rangle$, which we will refer to as the *inner product*. Then ΣV also acquires a scalar product, which we will denote by the same symbol $\langle \cdot, \cdot \rangle$. Namely,

\[\langle \Sigma a, \Sigma b \rangle := (-1)^{|a|}\langle a, b \rangle.\]

It is easy to check that the product on ΣV will be graded skew-symmetric. In other words it will determine a (linear) graded symplectic structure on ΣV.

We will consider the scalar product $\langle \cdot, \cdot \rangle$ as an element $\omega \in (\Sigma V^*)^\otimes 2$. Consider the element $\hat{m} := m(\omega) \in \hat{T}V^*$. Clearly $\hat{m} = \hat{m}_1 + \hat{m}_2 + \ldots$ where \hat{m}_i has wordlength $i + 1$. In other words, the tensors \hat{m}_i are obtained from m_i by ‘raising an index’ with the help of the form $\langle \cdot, \cdot \rangle$.

The space $T^n(\Sigma V^*)$ has an action of the symmetric group S_n permuting the tensor factors. Note that each time a pair of elements a, b in a monomial is permuted, the result acquires the sign $(-1)^{|a||b|}$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Definition 4.1. An A_∞-algebra $(\hat{T}\Sigma V^*, m)$ with an inner product $\langle \cdot, \cdot \rangle$ is called symplectic if \hat{m} is invariant with respect to all cyclic permutations of its tensor summands. A C_∞-algebra is called symplectic if it is so considered as an A_∞-algebra.

Given a basis x_i in ΣV^*, the element $\omega \in T^2(\Sigma V^*)$ could be written as $\omega = \sum \omega^i x_i \otimes x_j$. Consider the element

$$[\omega] := \sum \omega^i [x_i, x_j] \in L^2(\Sigma V^*) \hookrightarrow T^2(\Sigma V^*).$$

Clearly $[\omega]$ does not depend on the choice of a basis. An easy calculation establishes the following result.

Proposition 4.2. An A_∞-algebra $(\hat{T}\Sigma V^*, m)$ (or C_∞-algebra $(\hat{L}\Sigma V^*, m)$) with an inner product ω is symplectic if and only if $m([\omega]) = 0$.

Example 4.3. Let V be the cohomology algebra of S^n with its usual Poincaré duality form. It is easy to see that the corresponding symplectic A_∞-algebra has the form $k\langle \tau, y \rangle$ with $m = \text{ad} \tau - \tau^2 \partial_\tau$, $\omega = (-1)^n \tau \otimes y + y \otimes \tau$ and $[\omega] = 2[y, \tau]$.

Now suppose that M is a simply-connected rational Poincaré duality space of dimension n. Consider a Quillen minimal model $\hat{L}(M)$ and the corresponding contractible Quillen model $\hat{\mathcal{L}}(M)$. The C_∞-algebra $\hat{\mathcal{L}}(M)$ may not be symplectic; however it is so ‘up to homotopy’. In other words the quadratic part of its differential preserves the graded symplectic form on the space of its decomposables. This is just a reformulation of the invariance property of the Poincaré pairing $\langle ab, c \rangle = \langle a, bc \rangle$ on $H^*(M)$. Then the main theorem of [8] states that $\hat{\mathcal{L}}(M)$ is isomorphic to a symplectic S_∞-algebra; i.e. the whole differential, not just its quadratic part, preserves our symplectic form. Slightly modifying the proof in the cited reference, one can show that the resulting symplectic C_∞-algebra can be chosen to be unital.

Definition 4.4. We will call a symplectic unital minimal C_∞-algebra isomorphic to $\hat{\mathcal{L}}(M)$ a canonical contractible model of M.

Let us denote a canonical contractible model of M temporarily by $\hat{\mathcal{L}}_c(M)$. Choose a basis in $H^*(M)$ which includes 1 $\in H^0(M)$ and $[M]^* \in H^n(M)$, the dual to the fundamental cycle of M. We will denote the corresponding basis in $[\Sigma H^*(M)]^* = \Sigma^{-1} H_{-\bullet}(M)$ by $\tau, \{x_i\}, y$ where τ is the dual to 1 and $y = [M]$. Then the C_∞-structure m (the differential) on $\hat{\mathcal{L}}_c(M)$ will have the following form:

$$m = \text{ad} \tau - \frac{1}{2} [\tau, \tau] \partial_\tau + A(x, y) \partial_\tau + \sum B_i(x, y) \partial_{x_i} + C(x, y) \partial_y.$$

Since m has degree -1, we conclude from dimensional considerations that $A(x, y) = 0$ and that $B_i(x, y)$ and $C(x, y)$ do not depend on y, so we can write $B_i(x, y) = B_i(x)$ and $C(x, y) = C(x)$.

It follows that $\sum B_i(x) \partial_{x_i} + C(x) \partial_y$ determines a differential on $k\{\{x, y\}\}$, so we obtain a (nonunital) minimal C_∞-algebra $\mathcal{L}_c(M)$. Clearly an isomorphism between $\mathcal{L}_c(M)$ and $\hat{\mathcal{L}}(M)$ restricts to an isomorphism between $\mathcal{L}_c(M)$ and $\mathcal{L}(M)$, so $\mathcal{L}_c(M)$ could serve as a (minimal) Quillen model of M. We will call it a Stasheff model of M. From now on we will suppress the subscript c for a Stasheff model and a canonical contractible model of M since only those will be considered later on.
Furthermore note that since $B_i(x)$ does not depend on y, the derivation $\sum B_i(x) \partial_{x_i}$ restricted to the Lie algebra $k\{\{x\}\}$ has square zero and so determines a minimal C_∞-algebra. This minimal C_∞-algebra is a Quillen model of the $n-1$-skeleton M of M. It will be called a Stasheff model of M.

Now consider the Poincaré duality form $\langle \cdot, \cdot \rangle$ on $H^\bullet(M)$. It is clear that it is the direct sum of its restrictions on the subspaces $H^p(M) \oplus H^n(M)$ and $\bigoplus_{0 < i < n} H^i(M)$. Consequently the canonical element $[\omega] \in L^2(H_\bullet(M))$ could be represented as $[\omega] = [\bar{\omega}] + 2[y, \tau]$ where $[\bar{\omega}]$ corresponds to the nondegenerate scalar product on $\bigoplus_{0 < i < n} H^i(M)$. Note that $[\bar{\omega}]$ only involves the commutators of the x_i's. The following result shows that the condition that $m([\omega]) = 0$ imposes further restrictions on $B_i(x)$ and $C(x)$.

Theorem 4.5. Let $(k\{\{x, y\}\}, \text{ad} \tau - \frac{1}{2} [\tau, \tau] \partial + \sum B_i(x) \partial_{x_i} + C(x) \partial_y)$ be a Stasheff model for a Poincaré duality space M. Then the following hold.

1. $C(x)$ is purely quadratic; in fact $C(x) = \frac{1}{2} [\bar{\omega}]$.
2. The corresponding Stasheff model of M is symplectic; in other words $\sum B_i(x) \partial_{x_i}([\bar{\omega}]) = 0$.

Proof.

1. It is clear that $C(x) = \frac{1}{2} [\bar{\omega}] + C'(x)$ where $C'(x)$ denote a sum of terms of order > 3. Computing the part of $m(\frac{1}{2} [\bar{\omega}] - [\tau, y])$ containing the elements of bracket length > 3, we see that it is equal to $[\tau, C'(x)] +$ terms involving x_i's only. It follows that $[\tau, C'(x)] = 0$ and therefore $C'(x) = 0$ as claimed.

2. We have

$$0 = 2 \cdot m \circ m(y) = 2 \cdot m(\frac{1}{2} [\bar{\omega}]) = \sum B_i(x) \partial_{x_i}([\bar{\omega}]).$$

Remark 4.6. The last theorem was proved (in a different language) by Stasheff in [15]. A correction of Stasheff’s argument was later given in [12]; see also [16].

5. String bracket on the equivariant homology of the free loop space of M

5.1. **Cyclic cohomology of symplectic A_∞-algebras.** Let $(T\Sigma V^*, m)$ be a symplectic A_∞-algebra and let $[\omega] \in T^2 \Sigma V^*$ be the canonical element corresponding to the invariant inner product on V. Consider the graded Lie algebra $\text{Der}(T\Sigma V^*)$ of all continuous derivations of $T\Sigma V^*$. The commutator with m determines a differential $\text{Der}(T\Sigma V^*)$ making it into a (Hochschild) complex $C^\bullet(V)$. Denote by $SC^\bullet(V, V)$ the subcomplex of $C^\bullet(V, V)$ formed by symplectic derivations, i.e. the derivations vanishing on $[\omega]$.

Recall from [8] that $SC^\bullet(V, V)$ is isomorphic to $\Sigma^{[\omega]-2} C^\bullet_\chi(V)$, the cyclic Hochschild complex computing the cyclic cohomology of $(T\Sigma V^*, m)$.

Clearly the commutator of derivations determines the structure of a dgla on $SC^\bullet(V, V)$. Using the above isomorphism, we obtain the bracket

$$HC^n(V) \otimes HC^l(V) \to HC^{n+l-[\omega]+1}(V).$$

Example 5.1. Let V be a graded vector space together with a graded symmetric nondegenerate even or odd pairing $V \otimes V \to k$. Taking $m : T\Sigma V^* \to T\Sigma V^*$ to be the zero map, we can view V as a symplectic A_∞-algebra. Then $H^*_c(V)$ could be identified with the (completion of the) space of all cyclic words in ΣV^*. The
bracket \([5.1]\) coincides with the one defined by Kontsevich \([9]\) in the context of his noncommutative symplectic geometry.

5.2. Equivariant homology of \(\mathbb{L}M\) and cyclic cohomology. Let \(M\) be a simply-connected space of finite type. We denote by \(\mathbb{L}M\) the space of unbased loops in \(M\) and by \(H_*^{S^1}(\mathbb{L}M) := ES^1 \times_{S^1} \mathbb{L}M\) the \(S^1\)-equivariant homology of \(\mathbb{L}M\). There is a fibration \(ES^1 \times_{S^1} \mathbb{L}M \to BS^1\) which determines a map of graded coalgebras
\[
H_*^{S^1}(\mathbb{L}M) \to H_*(BS^1) = (k[u])^*.
\]
Since this fibration has a section, the above coalgebra map is split, so we can identify \(H_*(BS^1)\) with its image in \(H_*^{S^1}(\mathbb{L}M)\).

Definition 5.2. The reduced \(S^1\)-equivariant homology \(\overline{H}_*^{S^1}(\mathbb{L}M)\) of \(\mathbb{L}M\) is defined as \(\overline{H}_*^{S^1}(\mathbb{L}M) := H_*^{S^1}(\mathbb{L}M)/H_*(BS^1)\).

Recall from \([7]\), \([8]\) that \(H_*^{S^1}(\mathbb{L}M)\) could be expressed in terms of the cyclic cohomology of the cochain algebra of \(M\):
\[
H_*^{S^1}(\mathbb{L}M) \cong HC^{-n+1}(C^*(M)).
\]
The choice of a basepoint in \(M\) gives \(C^*(M)\) an augmentation and so its cyclic cohomology contains a copy of the \(HC^*(k) = (k[u])^*\). We have therefore
\[
HC^*(C^*(M)) \cong HC^*(k) \oplus \overline{HC}^*(C^*(M))
\]
where \(\overline{HC}^*(C^*(M))\) is the reduced cyclic cohomology of \(C^*(M)_+\) (the above isomorphism could be taken as a definition of the reduced cyclic cohomology in the augmented case). It is clear that there is an isomorphism
\[
\overline{H}_n^{S^1}(\mathbb{L}M) \cong \overline{HC}^{-n+1}(C^*(M)).
\]
We now assume that \(M\) be a simply-connected rational Poincaré duality space of dimension \(n\). Recall that we denoted by \(\hat{M}\) the \(n-1\)-skeleton of \(M\).

Theorem 5.3. The reduced equivariant homology of the loop space on \(\hat{M}\) possesses the structure of a graded Lie algebra of degree \(2-n\). The Lie bracket on \(\overline{H}_*^{S^1}(\mathbb{L}\hat{M})\) will be referred to as the string bracket. If \(N\) is another Poincaré duality space homotopy equivalent to \(M\) through an orientation-preserving homotopy equivalence, then the corresponding graded Lie algebras are isomorphic.

Proof. Let \(\mathcal{A}^*\) be the Sullivan minimal model of \(\hat{M}\) and let \(\mathcal{A}_+^*\) be its augmentation ideal. We have by Proposition \([3.3]\)
\[
HC^*(\mathcal{A}^*) \cong HC^*(\mathcal{A}_+^*) \oplus HC^*(k)
\]
\[
\cong \overline{HC}^*(\mathcal{A}^*) \oplus HC^*(k).
\]
We see that \(\overline{HC}^*(\mathcal{A}^*) \cong \overline{H}_*^{S^1}(\mathbb{L}\hat{M})\) is canonically identified with \(HC^*(\mathcal{A}_+^*)\).

Recall that \(\mathcal{A}_+^*\) has a minimal \(C_\infty\)-model that is symplectic—a Stasheff model. Denote this model by \(V\); we therefore have an isomorphism \(HC^*(\mathcal{A}_+^*) \cong HC^*(V)\).

Using this isomorphism, the bracket \([5.1]\) could be transferred to \(\overline{H}_*^{S^1}(\mathbb{L}\hat{M})\) as required. The homotopy invariance of the string bracket thus defined is evident. \(\square\)
Example 5.4. Consider the wedge of $2N$ spheres of the form

$$X = \bigvee_{i=1}^{N} (S^{n_i} \vee S^{n-n_i}),$$

where $1 < n_i < N - 1$. Then we could build a Poincaré duality space M out of X by attaching an n-cell. We conclude that X is homotopy equivalent to \dot{M}. Then the reduced equivariant cohomology of $\mathbb{L}\dot{M}$ can be identified with the cyclic cohomology of the corresponding zero-multiplication algebra which is isomorphic to the space of the cyclic words in $2N$ letters. The string bracket is Kontsevich’s noncommutative Poisson bracket $[[9]]$.

Remark 5.5. Since $H^*_S(\mathbb{L}M)$ could be identified (with an appropriate shift) with $HC^*(C^*(M))$, one can define a string bracket on $H^*_S(\mathbb{L}M)$ by taking the cyclic cohomology of the (contractible) symplectic A_∞-model of $C^*(M)$. This was the approach of [8] and it is likely that the obtained string bracket agrees with that of Sullivan-Chas. Recall that this model has the form $k\langle\langle \tau, x, y \rangle\rangle$. Since any symplectic derivation of $k\langle\langle x \rangle\rangle$ clearly extends to $k\langle\langle \tau, x, y \rangle\rangle$, we conclude that the string brackets on $\mathbb{L}M$ and $\mathbb{L}\dot{M}$ are compatible in the sense that the inclusion $\dot{M} \hookrightarrow M$ determines a map of corresponding graded Lie algebras. It would be interesting to give a geometric description of the string bracket on $\mathbb{L}\dot{M}$ along the lines of Sullivan-Chas.

Acknowledgments

The author wishes to express his appreciation to M. Aubry, J.-L. Lemaire and J. Stasheff for useful discussions.

References

Department of Mathematics, University of Leicester, Leicester LE1 7RH, England
E-mail address: al179@le.ac.uk