Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The Stasheff model of a simply-connected manifold and the string bracket

Author: A. Lazarev
Journal: Proc. Amer. Math. Soc. 136 (2008), 735-745
MSC (2000): Primary 55P62; Secondary 13D03, 57T30
Published electronically: October 24, 2007
MathSciNet review: 2358516
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We revisit Stasheff's construction of a minimal Lie-Quillen model of a simply-connected closed manifold $ M$ using the language of infinity-algebras. This model is then used to construct a graded Lie bracket on the equivariant homology of the free loop space of $ M$ minus a point similar to the Chas-Sullivan string bracket.

References [Enhancements On Off] (What's this?)

  • 1. A. K. Bousfield and V. K. A. M. Gugenheim, On 𝑃𝐿 de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. 8 (1976), no. 179, ix+94. MR 0425956
  • 2. M. Aubry, S. Halperin, J.-M. Lemaire. Poincaré duality models, preprint.
  • 3. H. J. Baues and J.-M. Lemaire, Minimal models in homotopy theory, Math. Ann. 225 (1977), no. 3, 219–242. MR 0431172
  • 4. M. Chas, D. Sullivan. String topology. arXiv:math.GT/9911159.
  • 5. K. Costello. Topological conformal field theories and Calabi-Yau categories. Adv. in Math., Vol. 210, 1, 165-214, 2007.
  • 6. E. Getzler, J.D.S. Jones. Operads, Homotopy Algebra, and Iterated Integrals for double Loop Spaces. arXiv:hep-th/9403055.
  • 7. John D. S. Jones, Cyclic homology and equivariant homology, Invent. Math. 87 (1987), no. 2, 403–423. MR 870737, 10.1007/BF01389424
  • 8. A. Hamilton, A. Lazarev. Homotopy algebras and noncommutative geometry. arXiv:math. QA/0410621.
  • 9. Maxim Kontsevich, Formal (non)commutative symplectic geometry, The Gel′fand Mathematical Seminars, 1990–1992, Birkhäuser Boston, Boston, MA, 1993, pp. 173–187. MR 1247289
  • 10. Maxim Kontsevich, Feynman diagrams and low-dimensional topology, First European Congress of Mathematics, Vol. II (Paris, 1992) Progr. Math., vol. 120, Birkhäuser, Basel, 1994, pp. 97–121. MR 1341841
  • 11. A. Lazarev, Hoschschild cohomology and moduli spaces of strongly homotopy associative algebras, Homology Homotopy Appl. 5 (2003), no. 1, 73–100. MR 1989615
  • 12. M. Kontsevich, Y. Soibelman. Notes on A-infinity algebras, A-infinity categories and non-commutative geometry I. arXiv:math.RA/0606241.
  • 13. Jean-Louis Loday, Cyclic homology, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1998. Appendix E by María O. Ronco; Chapter 13 by the author in collaboration with Teimuraz Pirashvili. MR 1600246
  • 14. Joseph Neisendorfer, Lie algebras, coalgebras and rational homotopy theory for nilpotent spaces, Pacific J. Math. 74 (1978), no. 2, 429–460. MR 494641
  • 15. James Stasheff, Rational Poincaré duality spaces, Illinois J. Math. 27 (1983), no. 1, 104–109. MR 684544
  • 16. Ronald N. Umble, Homotopy conditions that determine rational homotopy type, J. Pure Appl. Algebra 60 (1989), no. 2, 205–217. MR 1020716, 10.1016/0022-4049(89)90128-X

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 55P62, 13D03, 57T30

Retrieve articles in all journals with MSC (2000): 55P62, 13D03, 57T30

Additional Information

A. Lazarev
Affiliation: Department of Mathematics, University of Leicester, Leicester LE1 7RH, England

Received by editor(s): December 30, 2005
Received by editor(s) in revised form: December 2, 2006
Published electronically: October 24, 2007
Additional Notes: This research was partially supported by the EPSRC grant No. GR/SO7148/01
Communicated by: Paul Goerss
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.