Characterizing strong estimates

Authors:
Chaoyuan Liu and Joseph Rosenblatt

Journal:
Proc. Amer. Math. Soc. **136** (2008), 557-567

MSC (2000):
Primary 37A05, 37A50, 26A45; Secondary 28D05

Published electronically:
October 24, 2007

MathSciNet review:
2358496

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe necessary and sufficient conditions for square functions to map to for ergodic averages and Lebesgue derivatives.

**1.**Yuan Shih Chow and Henry Teicher,*Probability theory*, 2nd ed., Springer Texts in Statistics, Springer-Verlag, New York, 1988. Independence, interchangeability, martingales. MR**953964****2.**John B. Conway,*A course in functional analysis*, 2nd ed., Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1990. MR**1070713****3.**Richard Durrett,*Probability: theory and examples*, 2nd ed., Duxbury Press, Belmont, CA, 1996. MR**1609153****4.**Adriano M. Garsia,*Martingale inequalities: Seminar notes on recent progress*, W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam, 1973. Mathematics Lecture Notes Series. MR**0448538****5.**Roger L. Jones, Iosif V. Ostrovskii, and Joseph M. Rosenblatt,*Square functions in ergodic theory*, Ergodic Theory Dynam. Systems**16**(1996), no. 2, 267–305. MR**1389625**, 10.1017/S0143385700008816**6.**Roger L. Jones, Robert Kaufman, Joseph M. Rosenblatt, and Máté Wierdl,*Oscillation in ergodic theory*, Ergodic Theory Dynam. Systems**18**(1998), no. 4, 889–935. MR**1645330**, 10.1017/S0143385798108349**7.**Roger L. Jones, Joseph M. Rosenblatt, and Máté Wierdl,*Oscillation in ergodic theory: higher dimensional results*, Israel J. Math.**135**(2003), 1–27. MR**1996394**, 10.1007/BF02776048**8.**Shizuo Kakutani,*Induced measure preserving transformations*, Proc. Imp. Acad. Tokyo**19**(1943), 635–641. MR**0014222****9.**C. Liu,*The convergence of Lebesgue derivatives and ergodic averages*, Thesis, University of Illinois at Urbana-Champaign, 2005.**10.**Karl Petersen,*Ergodic theory*, Cambridge Studies in Advanced Mathematics, vol. 2, Cambridge University Press, Cambridge, 1983. MR**833286****11.**V. A. Rokhlin,*A 'general' measure-preserving transformation is not mixing*, Dokl. Akad. Nauk. SSSR, 60, 51-349, 1948.**12.**A. de la Torre and J. L. Torrea,*One-sided discrete square function*, Studia Math.**156**(2003), no. 3, 243–260. MR**1978442**, 10.4064/sm156-3-3

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
37A05,
37A50,
26A45,
28D05

Retrieve articles in all journals with MSC (2000): 37A05, 37A50, 26A45, 28D05

Additional Information

**Chaoyuan Liu**

Affiliation:
Department of Mathematics and Statistics, Wallace 313, Eastern Kentucky University, Richmond, Kentucky 40475

Email:
mary.liu@eku.edu

**Joseph Rosenblatt**

Affiliation:
Department of Mathematics, University of Illinois at Champaign-Urbana, 1409 W. Green Street, Urbana, Illinois 61801-2975

Email:
jrsnbltt@math.uiuc.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-07-09054-5

Received by editor(s):
October 5, 2006

Published electronically:
October 24, 2007

Additional Notes:
The second author recognizes the support of the NSF during the preparation of this article.

Communicated by:
Jane M. Hawkins

Article copyright:
© Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.