Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Classification of escaping exponential maps

Authors: Markus Förster, Lasse Rempe and Dierk Schleicher
Journal: Proc. Amer. Math. Soc. 136 (2008), 651-663
MSC (2000): Primary 37F10; Secondary 30D05
Published electronically: November 1, 2007
MathSciNet review: 2358507
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a complete classification of the set of parameters $ \kappa$ for which the singular value of $ E_{\kappa}:z\mapsto \exp(z)+\kappa$ escapes to $ \infty$ under iteration. In particular, we show that every path-connected component of this set is a curve to infinity.

References [Enhancements On Off] (What's this?)

  • [AO] Jan M. Aarts and Lex G. Oversteegen, The geometry of Julia sets, Trans. Amer. Math. Soc. 338 (1993), no. 2, 897-918. MR 1182980 (93j:30021)
  • [BBS] Mihai Bailesteanu, Horia Vlad Balan, and Dierk Schleicher, Hausdorff dimension of exponential parameter rays and their endpoints, arXiv:0704.3087, conditionally accepted for publication in Nonlinearity.
  • [BR] I. Noel Baker and Philip J. Rippon, Iteration of exponential functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 49-77. MR 752391 (86d:58065)
  • [BD] Ranjit Bhattacharjee and Robert L. Devaney, Tying hairs for structurally stable exponentials, Ergodic Theory Dynam. Systems 20 (2000), no. 6, 1603-1617. MR 1804947 (2002a:37064)
  • [BDG1] Clara Bodelón, Robert L. Devaney, Michael Hayes, Gareth Roberts, Lisa R. Goldberg, and John H. Hubbard, Hairs for the complex exponential family, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), no. 8, 1517-1534. MR 1721835 (2001a:37055)
  • [BDG2] -, Dynamical convergence of polynomials to the exponential, J. Differ. Equations Appl. 6 (2000), no. 3, 275-307. MR 1785056 (2001f:37055)
  • [D] Robert L. Devaney, Julia sets and bifurcation diagrams for exponential maps, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 167-171. MR 741732 (86b:58091)
  • [DGH] Robert L. Devaney, Lisa R. Goldberg, and John H. Hubbard, A dynamical approximation to the exponential map by polynomials, Preprint, MSRI Berkeley, 1986, published as Bodelón, Devaney, Hayes, Roberts, Goldberg and Hubbard, 1999, 2000.
  • [DJM] Robert L. Devaney, Xavier Jarque, and Mónica Moreno Rocha, Indecomposable continua and Misiurewicz points in exponential dynamics, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15 (2005), no. 10, 3281-3293. MR 2192642 (2006j:37053)
  • [DH] Adrien Douady and John Hubbard, Etude dynamique des polynômes complexes, Prépublications mathémathiques d'Orsay (1984 / 1985), no. 2/4.
  • [EL1] Alexandre È. Eremenko and Mikhail Yu. Lyubich, Iterates of entire functions, Preprint, Physico-Technical Institute of Low-Temperature Physics Kharkov, 1984. MR 769199 (86c:30044)
  • [EL2] -, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989-1020. MR 1196102 (93k:30034)
  • [E] Leonhardt Euler, De formulis exponentialibus replicatis, Acta Acad. Petropolitanae 1 (1777), 38-60.
  • [F] Markus Förster, Parameter rays for the exponential family, Diplomarbeit, Techn. Univ. München, 2003, Available as Thesis 2003-03 on the Stony Brook Thesis Server.
  • [FS] Markus Förster and Dierk Schleicher, Parameter rays for the exponential family, Preprint, 2005, to appear in Ergodic Theory Dynam. Systems.
  • [HSS] John H. Hubbard, Dierk Schleicher, and Mitsuhiro Shishikura, A topological characterization of postsingularly finite exponential maps and limits of quadratic differentials, Manuscript, 2004, submitted for publication.
  • [K] Bogus\lawa Karpinska, Hausdorff dimension of the hairs without endpoints for $ \lambda\operatorname{exp} z$, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 11, 1039-1044. MR 1696203 (2000e:37054)
  • [LSV] Bastian Laubner, Dierk Schleicher, and Vlad Vicol, A combinatorial classification of postsingularly periodic complex exponential maps, Preprint, 2006, arXiv:math.DS/ 0602602, conditionally accepted for publication in Discrete Contin. Dynam. Syst.
  • [M] John Milnor, Dynamics in one complex variable, third ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309 (2006g:37070)
  • [N] Sam B. Nadler, Jr., Continuum theory. An introduction, Monographs and Textbooks in Pure and Applied Mathematics, vol. 158, Marcel Dekker Inc., New York, 1992. MR 1192552 (93m:54002)
  • [Q] Weiyuan Qiu, Hausdorff dimension of the $ M$-set of $ \lambda\operatorname{exp}(z)$, Acta Math. Sinica (N.S.) 10 (1994), no. 4, 362-368. MR 1416147 (97g:30024)
  • [R1] Lasse Rempe, Dynamics of exponential maps, doctoral thesis, Christian-Albrechts-Universität Kiel, 2003,
  • [R2] -, A landing theorem for periodic rays of exponential maps, Proc. Amer. Math. Soc 134 (2006), no. 9, 2639-2648, arXiv:math.DS/0307371. MR 2213743
  • [R3] -, Topological dynamics of exponential maps on their escaping sets, Ergodic Theory Dynam. Systems 26 (2006), no. 6, 1939-1975, arXiv:math.DS/0309107. MR 2279273
  • [R4] -, Nonlanding dynamic rays of exponential maps, Ann. Acad. Sci. Fenn. Math. 32 (2007), no. 2, 353-369, arXiv:math.DS/0511588. MR 2337482
  • [RS1] Lasse Rempe and Dierk Schleicher, Bifurcations in the space of exponential maps, Preprint #2004/03, Institute for Mathematical Sciences, SUNY Stony Brook, 2004, arXiv:math.DS/0311480, submitted for publication.
  • [RS2] -, Combinatorics of bifurcations in exponential parameter space, Transcendental Dynamics and Complex Analysis (P. Rippon and G. Stallard, eds.), London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, 2007, pp. 317-370, arXiv:math.DS/0408011.
  • [S] Dierk Schleicher, On the dynamics of iterated exponential maps, Habilitation thesis, TU München, 1999.
  • [SZ1] Dierk Schleicher and Johannes Zimmer, Escaping points of exponential maps, J. London Math. Soc. (2) 67 (2003), no. 2, 380-400. MR 1956142 (2003k:37067)
  • [SZ2] -, Periodic points and dynamic rays of exponential maps, Ann. Acad. Sci. Fenn. Math. 28 (2003), 327-354. MR 1996442 (2004e:37068)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 37F10, 30D05

Retrieve articles in all journals with MSC (2000): 37F10, 30D05

Additional Information

Markus Förster
Affiliation: KPMG Deutsche Treuhand-Gesellschaft, Marie-Curie-Straße 30, 60439 Frankfurt/ Main, Germany

Lasse Rempe
Affiliation: Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, United Kingdom

Dierk Schleicher
Affiliation: International University Bremen, P.O. Box 750 561, 28725 Bremen, Germany

Received by editor(s): September 1, 2005
Received by editor(s) in revised form: January 16, 2007
Published electronically: November 1, 2007
Additional Notes: The first author was supported in part by a European fellowship of the Marie Curie Fellowship Association.
The second author was supported in part by a postdoctoral fellowship of the German Academic Exchange Service (DAAD) and by the German-Israeli Foundation for Scientific Research and Development (G.I.F.), grant no. G-643-117.6/1999
Communicated by: Juha M. Heinonen
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society