Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Mapping properties of analytic functions on the unit disk


Author: Alexander Yu. Solynin
Journal: Proc. Amer. Math. Soc. 136 (2008), 577-585
MSC (2000): Primary 30C55, 30F45
DOI: https://doi.org/10.1090/S0002-9939-07-09080-6
Published electronically: November 3, 2007
MathSciNet review: 2358498
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f$ be analytic on the unit disk $ \mathbb{D}$ with $ f(0)=0$. In 1989, D. Marshall conjectured the existence of the universal constant $ r_0>0$ such that $ f(r_0\mathbb{D})\subset \mathbb{D}_M:=\{w:\,\vert w\vert<M\}$ whenever the area, counting multiplicity, of a portion of $ f(\mathbb{D})$ over $ \mathbb{D}_M$ is $ <\pi M^2$. Recently, P. Poggi-Corradini (2007) proved this conjecture with an unspecified constant by the method of extremal metrics. In this note we show that such a universal constant $ r_0$ exists for a much larger class consisting of analytic functions omitting two values of a certain doubly-sheeted Riemann surface. We also find a numerical value, $ r_0=.03949\ldots$, which is sharp for the problem in this larger class but is not sharp for Marshall's problem.


References [Enhancements On Off] (What's this?)

  • 1. G. D. Anderson, M. K. Vamanamurthy, and M. K. Vuorinen, Conformal invariants, inequalities, and quasiconformal maps. Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1997. MR 1462077 (98h:30033)
  • 2. W. K. Hayman, Subharmonic Functions. Vol. 2. London Mathematical Society Monographs, 20. Academic Press, Inc., London, 1989. MR 1049148 (91f:31001)
  • 3. W. K. Hayman and P. B. Kennedy, Subharmonic Functions. Vol. 1. London Mathematical Society Monographs, 9. Academic Press, Inc., London, 1976. MR 0460672 (57:665)
  • 4. D. Hejhal, Universal covering maps for variable regions. Math. Z. 137 (1974), 7-20. MR 0349989 (50:2482)
  • 5. D. E. Marshall, A new proof of a sharp inequality concerning the Dirichlet integral. Ark. Mat. 27 no. 1 (1989), 131-137. MR 1004727 (90h:30097)
  • 6. Z. Nehari, Conformal Mapping. Reprinting of the 1952 edition. Dover Publications, Inc., New York, 1975. MR 0377031 (51:13206)
  • 7. P. Poggi-Corradini, Mapping properties of analytic functions on the disk. Proc. Amer. Math. Soc., 135 (2007) 2893-2898. MR 2317966
  • 8. A. Yu. Solynin, Functional inequalities via polarization. Algebra i Analiz 8 (1996), no. 6, 148-185; English translation in St. Petersburg Math. J. 8 (1997), no. 6, 1015-1038. MR 1458141 (98e:30001a)
  • 9. A. Yu. Solynin and M. Vuorinen, Estimates for the hyperbolic metric of the punctured plane and applications. Israel J. Math. 124 (2001), 29-60. MR 1856503 (2002j:30071)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 30C55, 30F45

Retrieve articles in all journals with MSC (2000): 30C55, 30F45


Additional Information

Alexander Yu. Solynin
Affiliation: Department of Mathematics and Statistics, Texas Tech University, Box 41042, Lubbock, Texas 79409
Email: alex.solynin@ttu.edu

DOI: https://doi.org/10.1090/S0002-9939-07-09080-6
Keywords: Analytic function, growth theorem, hyperbolic metric
Received by editor(s): October 26, 2006
Published electronically: November 3, 2007
Additional Notes: This research was supported in part by NSF grant DMS-0525339
Communicated by: Juha M. Heinonen
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society