Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Differential structure of the Thompson components of selfadjoint operators

Authors: Guillermina Fongi and Alejandra Maestripieri
Journal: Proc. Amer. Math. Soc. 136 (2008), 613-622
MSC (2000): Primary 47B15; Secondary 58B20
Published electronically: November 2, 2007
MathSciNet review: 2358503
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Different equivalence relations are defined in the set $ L(\mathcal{H})^s$ of selfadjoint operators of a Hilbert space $ \mathcal{H}$ in order to extend a very well known relation in the cone of positive operators. As in the positive case, for $ a \in L(\mathcal{H})^s$ the equivalence class $ C_a$ admits a differential structure, which is compatible with a complete metric defined on $ C_a$. This metric coincides with the Thompson metric when $ a$ is positive.

References [Enhancements On Off] (What's this?)

  • 1. Bonsall, F. F. and Duncan, J., Complete Normed Algebras. Springer-Verlag (1973). MR 0423029 (54:11013)
  • 2. Corach, G. and Maestripieri, A., Differential and metrical structure of positive operators. Positivity 4 (1999) 297-315. MR 1721561 (2001a:58004)
  • 3. Corach, G. and Maestripieri, A., Differential geometry on Thompson's components of positive operators. Rep. Math. Phys. 45 (2000) 23-37. MR 1751502 (2001h:58008)
  • 4. Corach, G., Maestripieri, A. and Stojanoff, D., Orbits of positive operators from a differentiable viewpoint. Positivity 8 (2004) 31-48. MR 2053574 (2005d:58011)
  • 5. Corach, G., Porta, H. and Recht, L., The geometry of spaces of selfadjoint invertible elements of a $ C^*$-algebra. Integral Equations Operator Theory 16 (1993) 333-359. MR 1209304 (94d:58010)
  • 6. Douglas, R. G., On majorization, factorization and range inclusion of operators in Hilbert space. Proc. Amer. Math. Soc. 17 (1966) 413-416. MR 0203464 (34:3315)
  • 7. Fillmore, P. A. and Williams, J. P., On operator ranges. Adv. Math. 7 (1971) 254-281. MR 0293441 (45:2518)
  • 8. Kato, Y., An elementary proof of Sz.-Nagy theorem. Math. Japon. 20 (1975) 257-258. MR 0405129 (53:8924)
  • 9. Kobayashi, S. and Nomizu, K., Foundations of differential geometry. Interscience, New York, 1969.
  • 10. Nussbaum, R., Hilbert's projective metric and iterated non linear maps. Mem. Amer. Math. Soc. 391 (1988). MR 961211 (89m:47046)
  • 11. Nussbaum, R., Finsler structures for the part metric and Hilbert's projective metric and applications to ordinary differential equations. Differential Integral Equations 7 (1994) 1649-1707. MR 1269677 (95b:58010)
  • 12. Rudin, W., Functional Analysis. McGraw-Hill (1973). MR 0365062 (51:1315)
  • 13. Thompson, A.C., On certain contraction mappings in a partially ordered vector space. Proc. Amer. Math. Soc. 14 (1963) 438-443. MR 0149237 (26:6727)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47B15, 58B20

Retrieve articles in all journals with MSC (2000): 47B15, 58B20

Additional Information

Guillermina Fongi
Affiliation: Instituto Argentino de Matemática, CONICET, Saavedra 15, 1083 Buenos Aires, Argentina

Alejandra Maestripieri
Affiliation: Instituto de Ciencias, Universidad Nacional General Sarmiento, 1613 Los Polvorines, Argentina

Keywords: Selfadjoint operators, Thompson part metric, differential geometry.
Received by editor(s): December 4, 2006
Published electronically: November 2, 2007
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society