STABLE INDECOMPOSABILITY OF LOOP SPACES
ON SYMPLECTIC GROUPS

KOUYEMON IRIYE

(Communicated by Paul Goerss)

Dedicated to the memory of Professor Masahiro Sugawara

Abstract. We prove that $\Omega Sp(n)$ is stably indecomposable if $n \geq 2$ or $n = \infty$.

1. Introduction

A spectrum X is said to be decomposable if X is homotopy equivalent to a wedge sum $X_1 \vee X_2$ of non-trivial spectra X_1 and X_2. Otherwise X is said to be indecomposable. A CW complex X is said to be stably decomposable if the suspension spectrum $\Sigma^\infty X$ is decomposable as a spectrum. Otherwise it is said to be stably indecomposable. We are considering the following problem.

Question. Let G be a compact connected Lie group. Is the loop space ΩG stably indecomposable?

If G is not simply connected, then ΩG is not connected and, therefore, is stably decomposable. If $G = G_1 \times G_2$, then ΩG is stably homotopy equivalent to $\Omega G_1 \vee \Omega G_2$ and, therefore, is stably decomposable, too. Thus, to solve the problem above, it is sufficient to consider a simply connected, simple Lie group. Hopkins [2] proved that $\Omega Sp(2)$ and $\Omega Sp(3)$ are stably indecomposable. Later Hubbuck [3] added ΩG_2 and ΩF_4 to the list of such spaces. We [4] also proved that ΩE_6 and ΩE_7 are stably indecomposable. In contrast to these results $\Omega SU(n)$ is known to be stably decomposable [1].

In this paper we will show that $\Omega Sp(n)$ are stably indecomposable for $n \geq 2$, which was conjectured by Hubbuck.

Theorem 1.1. $\Omega Sp(n)$ is stably indecomposable if $n \geq 2$ or $n = \infty$.

Needless to say, $\Omega Sp(1) = \Omega S^3$ is stably decomposable.

To prove the theorem we will investigate $H_*(\Omega Sp(n); F_2)$. We are not showing that it is indecomposable as a module over the Steenrod algebra. For $n \geq 4$, $H_*(\Omega Sp(n); F_2)$ is a sum of three indecomposable modules over the Steenrod algebra, and these modules are linked by higher-order operations as showed by Hubbuck.
2. Proofs

We are really going to prove the following localized version of Theorem 1.1.

Theorem 2.1. \(\Omega Sp(n) \) is stably indecomposable at the prime 2 if \(n \geq 2 \) or \(n = \infty \).

From now on until the end of this paper all spaces and spectra are assumed to be localized at the prime 2, and \(H_*(X) \) and \(H^*(X) \) stand for \(H_*(X; \mathbb{F}_2) \) and \(H^*(X; \mathbb{F}_2) \), respectively.

The Steenrod operation acts on homology groups via the following formula:

\[
\langle \alpha, xSq^i \rangle = \langle Sq^i \alpha, x \rangle
\]
for \(\alpha \in H^*(X) \) and \(x \in H_*(X) \), where \(\langle , \rangle \) denotes the Kronecker pairing of cohomology with homology.

First we recall the ring structure of \(H_*(\Omega Sp(n)) \) and the action of the Steenrod algebra on them by Kono-Kozima [5]:

\[
H_*(\Omega Sp(n)) \cong \mathbb{F}_2[z_1, z_3, \ldots, z_{2n-1}]
\]
and \(|z_{2i-1}| = 4i - 2 \), where \(|x| \) denotes the degree of an element of \(x \). To state the action of the Steenrod algebra on \(z_{2i-1} \), for a positive integer \(i \) we define

\[
z_i = (z_{b(i)})^{2^{n(i)}},
\]
where \(a(i) \) and \(b(i) \) are unique non-negative integers such that \(i = 2^{a(i)}b(i) \) and \(b(i) \) is odd. Then we have

\[
z_{2i-1}^2 = \binom{2i - 2 - j}{j} z_{2i-1-j}.
\]
In particular, \(z_{2i-1}^2 = z_{2i-2} \). We also have

\[
z_i Sq^j = \binom{i - 1 - j}{j} z_{i-j}
\]
for any positive integer \(i \) such that \(z_i \in H_*(\Omega Sp(n)) \).

As \(Sq^2 Sq^2 = 0 \) on \(H_*(\Omega Sp(n)) \) we can define

\[
H_*(H_*(\Omega Sp(n)); Sq^2) = \text{Ker} Sq^2/\text{Im} Sq^2.
\]
To compute this group we put

\[
\tilde{z}_{2i-1} = \begin{cases} \frac{z_{2i+1}}{z_i} + \frac{z_{2i}}{z_i} z_{2i-2} & \text{if } 2i - 1 = 2^j + 1 \text{ for some } j \geq 2, \\ \frac{z_{2i-1}}{z_i} z_{2i-1} + z_3 z_{2i-2} & \text{otherwise.} \end{cases}
\]

Lemma 2.2. If \(2n - 1 = 2^m + 1 \) for some \(m \geq 3 \), then

\[
H_*(H_*(\Omega Sp(n)); Sq^2) \cong \Lambda(z_1, \tilde{z}_5, \tilde{z}_9, \ldots, \tilde{z}_{2m-2+1}) \otimes \mathbb{F}_2[\tilde{z}_{2m-1+1}, \tilde{z}_{2m+1}].
\]
If \(2^m + 1 < 2n - 1 < 2^m+1 + 1 \) for some \(m \geq 2 \), then

\[
H_*(H_*(\Omega Sp(n)); Sq^2) \cong \Lambda(z_1, \tilde{z}_5, \tilde{z}_9, \ldots, \tilde{z}_{2m-1+1}) \otimes \mathbb{F}_2[\tilde{z}_{2m+1}].
\]
For \(n = \infty \), \(H_*(H_*(\Omega Sp)); Sq^2) \cong \Lambda(z_1, \tilde{z}_5, \tilde{z}_9, \ldots, \tilde{z}_{2m+1}, \ldots). \)

Proof. If \(z_1 \) is inverted, then

\[
H_*(\Omega Sp(n))[z_1^{-1}] = \mathbb{F}_2[z_1, z_3, \tilde{z}_5, \ldots, \tilde{z}_{2n-1}][z_1^{-1}].
\]
As \(\tilde{z}_{2i-1} Sq^2 = 0 \) and \(z_3 Sq^2 = z_1^2 \), it is easy to see that

\[
\text{Ker}(Sq^2 : H_*(\Omega Sp(n))[z_1^{-1}] \to H_*(\Omega Sp(n))[z_1^{-1}]) = \mathbb{F}_2[z_1, z_3^2, \tilde{z}_5, \ldots, \tilde{z}_{2n-1}][z_1^{-1}]
\]
and that
\[\text{Ker}(Sq^2 : H_*(\Omega Sp(n)) \to H_*(\Omega Sp(n))) = \mathbb{F}_2[z_1, z_3, \tilde{z}_5, \ldots, \tilde{z}_{2n-1}]. \]

Let \(m \) be the unique integer such that \(2^m + 1 \leq 2n - 1 < 2^{m+1} + 1 \). Since
\[(z_3 z_{2i-1}) Sq^2 = \tilde{z}_{2i-1} \]
for \(i \) such that \(2i - 1 \neq 2^j + 1 \) for any \(j \geq 2 \), and
\[(z_{2i+1} + z_3^{2j+1} - 4z_7) Sq^2 = \tilde{z}_{2i+1}^2 \]
for \(j \geq 2 \), \(z_3 Sq^2 = \tilde{z}_1^2 \) and \(z_7 Sq^2 = \tilde{z}_3^2 \), there is an epimorphism
\[\mathbb{F}_2[z_1, \tilde{z}_5, \tilde{z}_9, \ldots, \tilde{z}_{2m+1}]/I \to H_*(H_*(\Omega Sp(n)); Sq^2), \]
where \(I \) is the ideal generated by \(\tilde{z}_1^2 \) and \(\{\tilde{z}_{2i+1}^2 | 11 \leq 2i+1 + 3 \leq 2n - 1\} \). Here we remark that \(2n - 1 \geq 7 \).

If \(2n - 1 = 2m + 1 \) for some \(m \geq 3 \), then
\[\mathbb{F}_2[z_1, \tilde{z}_5, \tilde{z}_9, \ldots, \tilde{z}_{2m+1}]/I \cong \Lambda(z_1, \tilde{z}_5, \tilde{z}_9, \ldots, \tilde{z}_{2m-2+1}) \otimes \mathbb{F}_2[\tilde{z}_{2m-1}, \tilde{z}_{2m+1}]. \]
Since \(z_{2i-1} Sq^2 = z_i^2 \) for \(i \leq 2m - 1 \), \(y Sq^2 \) is a sum of monomials
\[\tilde{z}_1^{k_1} \tilde{z}_3^{k_3} \tilde{z}_5^{k_5} \cdots \tilde{z}_{2m-1}^{k_{2m-1}} \tilde{z}_{2m+1}^{k_{2m+1}} \]
with \(k_{2i-1} \geq 1 \) for some \(2i - 1 \leq 2m - 1 - 1 \). Therefore, the epimorphism
\[\Lambda(z_1, \tilde{z}_5, \tilde{z}_9, \ldots, \tilde{z}_{2m-2+1}) \otimes \mathbb{F}_2[\tilde{z}_{2m-1}, \tilde{z}_{2m+1}] \to H_*(H_*(\Omega Sp(n)); Sq^2) \]
is monomorphically, and therefore, isomorphic.

The other cases are proved similarly. \(\square \)

Lemma 2.3. Let \(n \geq 4 \) and \(x \in H_*(\Omega Sp(n)) \) with \(|x| > 2 \). If \(x Sq^i = 0 \) for all \(i > 0 \), then \(x \in (H_{|x|+2}(\Omega Sp(n))); Sq^2 \).

Proof. We prove the lemma only when \(2n - 1 = 2m + 1 \) for some \(m \geq 3 \) since the other cases are proved similarly.

First we will show that without loss of generality we may assume that \(x \) is in the subring \(\mathbb{F}_2[z_1^2, z_3, \ldots, z_{2m+1}] \). We write \(x = x' + x'' \) where \(x', x'' \) are in the subring \(\mathbb{F}_2[z_1^2, z_3, \ldots, z_{2m+1}] \). If \(x Sq^i = 0 \) for all \(i > 0 \), then we have
\[0 = x Sq^i = z_1 (x' Sq^i + x'' Sq^i). \]
Since \(x' Sq^i, x'' Sq^i \) are in the subring \(\mathbb{F}_2[z_1^2, z_3, \ldots, z_{2m+1}] \), the equation above implies that \(x' Sq^i = x'' Sq^i = 0 \). If \(x', x'' \) are in the \(Sq^2 \) image, then so is \(x \). Thus we assume that \(x \) is in the subring \(\mathbb{F}_2[z_1^2, z_3, \ldots, z_{2m+1}] \).

For a sequence of non-negative integers \(I = (\varepsilon_2, \varepsilon_3, \ldots, \varepsilon_{m-2}, \varepsilon_{m-1}, \varepsilon_m) \) with \(\varepsilon_i = 0 \) or 1, we define
\[\tilde{z}_I = \tilde{z}_5^{\varepsilon_2} \cdots \tilde{z}_{2m-1}^{\varepsilon_{m-2}} \tilde{z}_{2m-1}^{\varepsilon_{m-1}} \tilde{z}_{2m+1}^{\varepsilon_m}. \]

Then by Lemma 2.2 \(x \) is written as
\[x = \sum_I a_I \tilde{z}_I + y Sq^2 \]
for some \(y \in H_{|x|+2}(\Omega Sp(n)) \), where \(a_I \in \mathbb{F}_2 \) and the sum is taken over sequences of non-negative integers \(I = (\varepsilon_2, \varepsilon_3, \ldots, \varepsilon_{m-2}, \varepsilon_{m-1}, \varepsilon_m) \) such that \(\varepsilon_i = 0 \) or 1 and \(|I| = |x| \). Now we are breaking the argument up into three steps.

Step 1). We will show that \(a_I = 0 \) for all \(I \) such that \(\varepsilon_i = 1 \) for some \(2 \leq i \leq m - 2 \).
Let Λ_1 be the ideal of $\mathbb{F}_2[z_1, z_3, \ldots, z_{2^m+1}]$ generated by the elements z_{2i-1}^2 for $1 \leq 2i-1 \leq 2^m-1$. Since $y Sq^2 \in \Lambda_1$ and the ideal Λ_1 is stable under the action of the Steenrod algebra, by applying Sq^4 to equation (2.1) we have

$$0 = x Sq^4 = \sum_I a_I (\tilde{z}_I Sq^4)$$

in $\mathbb{F}_2[z_1, z_3, \ldots, z_{2^m+1}]/\Lambda_1 \cong \Lambda(\mathbb{F}_2[z_1, z_3, \ldots, z_{2^m+1}], \mathbb{F}_2[z_{2^m+1}, \ldots, z_{2^m+1}]).$

For an integer ℓ such that $2 \leq \ell \leq m - 2$, we define a map

$$\phi_\ell : \Lambda(z_1, z_3, \ldots, z_{2^m+1}) \otimes \mathbb{F}_2[z_{2^m+1}, \ldots, z_{2^m+1}]$$
$$\rightarrow \Lambda(z_1, z_3, \ldots, z_{2\ell-3}, z_{2\ell+1}, \ldots, z_{2^m-1}) \otimes \mathbb{F}_2[z_{2^m+1}, \ldots, z_{2^m+1}]$$

as follows: If $\alpha \in \Lambda(z_1, z_3, \ldots, z_{2^m-1}) \otimes \mathbb{F}_2[z_{2^m+1}, \ldots, z_{2^m+1}]$ is written as

$$\alpha = z_{2^\ell-1}^2 + \gamma$$

with $\beta, \gamma \in \Lambda(z_1, z_3, \ldots, z_{2^\ell-3}, z_{2^\ell+1}, \ldots, z_{2^m-1}) \otimes \mathbb{F}_2[z_{2^m+1}, \ldots, z_{2^m+1}]$, then we define $\phi_\ell(\alpha) = \beta$.

For $2 \leq \ell \leq m - 2$ and $I = (e_2, e_3, \ldots, e_{m-2}, j_{m-1}, j_m)$ we define

$$z_{It} = z_{e_2}^{e_2} \cdots z_{e_{\ell-1}}^{e_{\ell-1}} z_{e_{\ell+1}}^{e_{\ell+1}} \cdots z_{e_{m-2}}^{e_{m-2}} z_{j_{m-1}}^{j_{m-1}} z_{j_m}^{j_m}.$$

Since $\tilde{z}_{2^{k+1}} Sq^4 = \left(\binom{2^{k+1} - 1}{2^k - 1}\right) z_{2^{k-1}} = z_{2^{k-1}}$ for $k > 1$, it is easy to see that

$$\phi_\ell(\tilde{z}_I Sq^4) = \begin{cases} z_{I\ell} & \text{if } e_{\ell} = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Thus equation (2.2) implies that

$$0 = \phi_\ell(x Sq^4) = \sum_{I \text{ such that } e_\ell = 1} a_I z_{I\ell}$$

in $\Lambda(z_1, z_3, \ldots, z_{2^\ell-3}, z_{2^\ell+1}, \ldots, z_{2^m-1}) \otimes \mathbb{F}_2[z_{2^m+1}, \ldots, z_{2^m+1}]$ and we proved that $a_I = 0$ for all I such that $e_i = 1$ for some $2 \leq i \leq m - 2$.

Step II). We proved that x is written as

$$x = \sum a_{(j_{m-1}, j_m)} z_{j_{m-1}}^{j_{m-1}} z_{2^{m-1}+1}^{j_m} y Sq^2$$

for some $y \in H_{|x|+2}(\Omega Sq^n)$. In the second step we will show that $a_{(j_{m-1}, j_m)} = 0$ if $j_m > 0$. This is done by downward induction on j_m. Let k be a positive integer and assume that $a_{(j_{m-1}, j_m)} = 0$ if $j_m > k$.

Let Λ_2 be the ideal generated by z_{2i-1} for $1 \leq 2i-1 \leq 2^m-1$. Since $y Sq^2 \in \Lambda_2$ and the ideal Λ_2 is stable under the action of the Steenrod algebra, by applying Sq^{2^m} to equation (2.3) we have

$$0 = x Sq^{2^m} = \sum a_{(j_{m-1}, j_m)} (\tilde{z}_{j_{m-1}}^{j_{m-1}} z_{j_m}^{j_m}) Sq^{2^m}$$

in $\mathbb{F}_2[z_1, \ldots, z_{2^m+1}]/\Lambda_2 \cong \mathbb{F}_2[z_{2^m+1}, \ldots, z_{2^m+1}]$.

To compute $(\tilde{z}_{j_{m-1}}^{j_{m-1}} z_{j_m}^{j_m}) Sq^{2^m}$ we remark that

$$\tilde{z}_{2^{m-1}+1} Sq^i \in \Lambda_2 \quad \text{unless } i = 0$$

and that

$$\tilde{z}_{2^m+1} Sq^i = \left(\binom{2^m - i}{i}\right) z_{2^{m-1}+1} = 0 \quad \text{if } i > 2^{m-1}.$$
Thus in $\mathbb{F}_2[z_1, \ldots, z_{2m+1}]/\Lambda_2 \cong \mathbb{F}_2[z_{2m-1+1}, \ldots, z_{2m+1}]$ we have
\[
0 = xS^2m^k = \sum a_{(j_m-1,j_m)}(z_{m-1}^{j_m-1}z_{m+1}^{j_m})S^2m^k
= a_{(j,k)}z_{m-1+1}^j(z_{m+1}^kS^2m^k) + \sum_{j_m<k} a_{(j_m-1,j_m)}z_{m-1+1}^{j_m-1}(z_{m+1}^{j_m}S^2m^k)
= a_{(j,k)}z_{m-1+1}^{j+k},
\]
which implies that $a_{(j,k)} = 0$ and completes the induction argument.

Step III). We proved that x is written as
\[
(2.4) \quad x = az_{m-2+1}^j + yS^2m^{-j}
\]
for some $a \in \mathbb{F}_2$, $y \in H_{|x|=2}(\Omega Sp(n))$ and $j > 0$. In the final step we will show that $a = 0$ and complete the proof.

By applying S^2m^{-j} to equation (2.4) we have
\[
az_{m-2+1}^j = yS^2S^2m^{-j} = yS^2m^{-j+2}.
\]

For a sequence of integers $S = (2s_1-1, 2s_2-1, \ldots, 2s_t-1)$ such that $2m-2+1 \leq 2s_1-1 \leq 2s_2-1 \leq \cdots \leq 2s_t-1 \leq 2m+1$, we define
\[
S = z_{s_1-1}z_{s_2-1} \cdots z_{s_t-1}.
\]
Then y is written as
\[
y = \sum b_S z_S + y',
\]
where $b_S \in \mathbb{F}_2$. S ranges over all sequences of integers $S = (2s_1-1, 2s_2-1, \ldots, 2s_t-1)$ such that $2m-2+1 \leq 2s_1-1 \leq 2s_2-1 \leq \cdots \leq 2s_t-1 \leq 2m+1$ and $|S| = |y|$, and y' is an element of the ideal generated by z_{2i-1} for $1 \leq 2i-1 \leq 2m-2-1$. To prove that $a = 0$ it is sufficient to prove that the coefficient of z_{m-2+1}^j in the expansion of $z_S S^2m^{-j+2}$ as a sum of the standard monomials for $\mathbb{F}_2[z_1, z_3, \ldots, z_{2m+1}]$ is zero.

Since
\[
(z_{s_1-1}z_{s_2-1} \cdots z_{s_t-1})S^2m^{-j+2} = \sum (z_{s_1-1}S^2q^{2k_1})(z_{s_2-1}S^2q^{2k_2}) \cdots (z_{s_t-1}S^2q^{2k_t}),
\]
we consider the equation
\[
z_{s_1-1}S^2q^{2k_i} = \left(\frac{2s_i - 2 - k_i}{k_i}\right)z_{s_1-1-k_i} = z_{s_1-1}^{2r_i} z_{m-2+1}^{2r_i} = z_{(2m-2+1)2r_i},
\]
Then $2s_i - 1 - k_i = (2m-2+1)2r_i$, that is, $2s_i - 1 = (2m-2+1)2r_i + k_i$. Since $2s_i - 1 = (2m-2+1)2r_i + k_i \leq 2m+1$, we have $r_i = 0$ or 1.

If $r_i = 0$ and $k_i > 0$, then
\[
\left(\frac{2s_i - 2 - k_i}{k_i}\right) = \left(\frac{2m-2}{k_i}\right) \neq 0
\]
implies that $k_i = 2m-2$ and is even. Thus $2s_i - 1 = 2m-1 + 1$.

If $r_i = 1$ and $k_i > 0$, then
\[
\left(\frac{2s_i - 2 - k_i}{k_i}\right) = \left(\frac{2m-1+1}{k_i}\right) \neq 0
\]
implies that \(k_i = 1 \) or \(2^m - 1 + 1 \) since \(k_i = 2s_i - 1 - 2(2^{m-2} + 1) \) is odd. Thus \(2s_i - 1 = 2^m - 1 + 3 \) or \(2^m + 3 \). The last case is impossible since \(2s_i - 1 \leq 2^m + 1 \). Thus \(2s_i - 1 = 2^{m-1} + 3 \) and \(k_i = 1 \).

According to the argument above the coefficient of \(z^j_{2m-2+1} \) in \(Sq^{2m-1j+2}z_S \) is zero unless \(z_S \) is

\[
z^r_{2m-2+1}z^s_{2m-1+1}z^t_{2m-1+3}
\]

for some non-negative integers \(r, s, t \). If the coefficient of \(z^j_{2m-2+1} \) in

\[
(z^r_{2m-2+1}z^s_{2m-1+1}z^t_{2m-1+3})Sq^{2m-1j+2} = z^r_{2m-2+1}(z^s_{2m-1+1})Sq^{2m-1s}(z^t_{2m-1+3})Sq^{2t} + \cdots
\]

is non-zero, then \(2m-1j + 2 = 2m-1s + 2t \), that is, \(t = 1 + 2m-2(j - s) \). As \(m \geq 3 \), this implies that \(j - s \geq 0 \). Since the degree of \(z^j_{2m-1+1} \) is equal to that of

\[
(z^r_{2m-2+1}z^s_{2m-1+1}z^t_{2m-1+3})Sq^2,
\]

we have

\[
j(2m-1 + 1) = r(2m-2 + 1) + s(2m-1 + 1) + t(2m-1 + 3) - 1,
\]

that is,

\[
2 \leq r + 2 = -(j - s)(2m-1 - 1) \leq 0,
\]

which is impossible. We proved that the coefficient of \(z^j_{2m-2+1} \) in \(z_S Sq^{2m-1j+2} \) is zero and, therefore, completed the proof of the lemma.

For a connected space \(X \) of finite type we associate a graph \(G(X) \) as follows. The vertices of \(G(X) \) are non-zero elements of \(\hat{H}_s(X) \) and a pair of vertices \(\{x, y\} \) is an edge of \(G(X) \) if and only if \(xSq^i = y \) or \(ySq^i = x \) for some \(i > 0 \).

Lemma 2.4. Let \(n \geq 4 \) or \(n = \infty \). Every vertex of \(G(\Omega Sp(n)) \) whose dimension is greater than two is connected to \(z^1_2 \) or \(z^3_3 \).

Proof. By induction on the dimension of a vertex we will prove the lemma. Let \(x \) be a vertex of \(G(\Omega Sp(n)) \).

If \(|x| = 4 \), then \(x = z^2_2 \). If \(|x| = 6 \), then \(x = z^3_1, z^3_1 + z_3 \) or \(z_3 \). Since \((z^3_1 + z_3)Sq^2 = z_3Sq^2 = z^2_1 \), the assertion is true.

Let \(|x| = 2m \geq 8 \) and assume that the assertion is true for vertices whose dimensions are less than \(|x| \). If \(xSq^i \neq 0 \) for some \(i > 0 \), then the assertion is true by induction. If \(xSq^i = 0 \) for all \(i > 0 \), then by Lemma 2.3 there is a vertex \(y' \) such that \(y'Sq^2 = x \). We put

\[
y = \begin{cases} y' & \text{if } y'Sq^4 \neq 0, \\
y' + z^{m-4}_1z_5 + z^{m-2}_1z_3 & \text{if } y'Sq^4 = 0. \end{cases}
\]

Then \(ySq^2 = x \) and \(ySq^4 \neq 0 \), and \(x \leftarrow y \rightarrow ySq^4 \) is a path which connects \(x \) and a vertex whose dimension is less than \(x \). Then by induction there is a path which connects \(ySq^4 \) and \(z^2_1 \) or \(z^3_3 \). Therefore there is a path which connects \(x \) and \(z^2_1 \) or \(z^3_3 \), and we complete the proof.

We remark that Lemma 2.3 is valid for \(n = 2 \) or \(3 \) and that Lemma 2.4 is valid for \(n = 3 \). These facts follow Proposition 2.1 of [3].
Proof of Theorem 2.1. As the theorem for $n = 2$ and 3 was proved by Hopkins and Hubbuck, we prove the theorem for $n \geq 4$ or $n = \infty$.

We give CW-decompositions for $\Omega Sp(n)$ without odd dimensional cells for all n. Then $(\Omega Sp(2))_8$ is homotopy equivalent to $(\Omega Sp(n))_8$, where for a CW-complex X by X_r we denote the r-skeleton of X. By [3] $(\Omega Sp(2))_8$ is stably homotopy equivalent to $Z \vee S^8$, where Z is a stably indecomposable CW-complex. Therefore if $\Omega Sp(n)$ is stably split as $\Omega Sp(n) \simeq X(1) \vee X(2)$, where $H_2(X(1)) \cong \mathbb{F}_2$; then $X(2)$ is 7-connected. By Lemma 2.4 this implies that $X(2)$ must be trivial and completes the proof of the theorem.

References

1. M. C. Crabb, On stable splitting of $U(n)$ and $\Omega U(n)$, Springer Lecture Notes in Math. 1298 (1986), 35-53. MR928822 (89d:55019)
3. J. R. Hubbuck, Some stably indecomposable loop spaces, Springer Lecture Notes in Math. 1418 (1990), 70-77. MR1048176 (91g:55013)

Department of Mathematics and Information Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531 Japan

E-mail address: kiriye@mi.s.osakafu-u.ac.jp

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use