Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Uniqueness of the Kontsevich-Vishik trace


Authors: L. Maniccia, E. Schrohe and J. Seiler
Journal: Proc. Amer. Math. Soc. 136 (2008), 747-752
MSC (2000): Primary 58J40, 58J42, 35S05
DOI: https://doi.org/10.1090/S0002-9939-07-09168-X
Published electronically: November 1, 2007
MathSciNet review: 2358517
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M$ be a closed manifold. We show that the Kontsevich-Vishik trace, which is defined on the set of all classical pseudodifferential operators on $ M$, whose (complex) order is not an integer greater than or equal to $ - \dim M$, is the unique functional which (i) is linear on its domain, (ii) has the trace property and (iii) coincides with the $ L^2$-operator trace on trace class operators.

Also the extension to even-even pseudodifferential operators of arbitrary integer order on odd-dimensional manifolds and to even-odd pseudodifferential operators of arbitrary integer order on even-dimensional manifolds is unique.


References [Enhancements On Off] (What's this?)

  • 1. A. Connes and H. Moscovici. The local index formula in noncommutative geometry. Geom. Funct. Anal. 5, 174-243 (1995). MR 1334867 (96e:58149)
  • 2. B. Fedosov, F. Golse, E. Leichtnam, and E. Schrohe. The noncommutative residue for manifolds with boundary. J. Funct. Anal. 142, 1-31 (1996). MR 1419415 (97h:58157)
  • 3. G. Grubb and E. Schrohe. Traces and quasi-traces on the Boutet de Monvel algebra. Ann. Inst. Fourier (Grenoble) 54, 1641-1696 (2004). MR 2127861 (2006m:58038)
  • 4. G. Grubb. A resolvent approach to traces and zeta Laurent expansions. AMS Contemp. Math. 366, 67-93 (2005). MR 2114484 (2006f:58042)
  • 5. G. Grubb. The local and global parts of the basic zeta coefficient for pseudodifferential boundary operators. Preprint arXiv math.AP/0611854.
  • 6. V. Guillemin. A new proof of Weyl's formula on the asymptotic distribution of eigenvalues- Adv. Math. 55, 131-160 (1985). MR 772612 (86i:58135)
  • 7. M. Kontsevich and S. Vishik. Determinants of elliptic pseudo-differential operators. Preprint, Max-Planck-Institut für Math., Bonn, 1994.
  • 8. M. Kontsevich and S. Vishik. Geometry of determinants of elliptic operators. In Functional Analysis on the Eve of the 21st Century, Progress in Math. 131, Birkhäuser Verlag, 1995. MR 1373003 (96m:58264)
  • 9. M. Lesch. On the noncommutative residue for pseudodifferential operators with log-polyhomogeneous symbols. Ann. Global Anal. Geom. 17, 151-187 (1999). MR 1675408 (2000b:58050)
  • 10. L. Maniccia, E. Schrohe and J. Seiler. Determinants of SG-pseudodifferential operators. In preparation.
  • 11. K. Okikiolu. Critical metrics for the determinant of the Laplacian in odd dimensions. Ann. Math. 153, 471-531 (2001). MR 1829756 (2002j:58056)
  • 12. S. Paycha and S. Scott. An explicit Laurent expansion for regularized integrals of holomorphic symbols. To appear in Geom. and Funct. Anal., arXiv math.AP/0506211.
  • 13. M. Wodzicki. Local invariants of spectral asymmetry. Invent. Math. 75, 143-187 (1984). MR 728144 (85g:58089)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 58J40, 58J42, 35S05

Retrieve articles in all journals with MSC (2000): 58J40, 58J42, 35S05


Additional Information

L. Maniccia
Affiliation: Università di Bologna, Dipartimento di Matematica, Piazza di Porta S. Donato 5, 40127 Bologna, Italy
Email: maniccia@dm.unibo.it

E. Schrohe
Affiliation: Leibniz Universität Hannover, Institut für Analysis, Welfengarten 1, 30167 Hannover, Germany
Email: schrohe@math.uni-hannover.de

J. Seiler
Affiliation: Leibniz Universität Hannover, Institut für Angewandte Mathematik, Welfengarten 1, 30167 Hannover, Germany
Email: seiler@ifam.uni-hannover.de

DOI: https://doi.org/10.1090/S0002-9939-07-09168-X
Keywords: Kontsevich-Vishik canonical trace, pseudodifferential operators
Received by editor(s): February 9, 2007
Published electronically: November 1, 2007
Dedicated: Dedicated to Boris V. Fedosov on the occasion of his 70th birthday
Communicated by: Mikhail Shubin
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society