SIMULTANEOUS SURFACE RESOLUTION
IN CYCLIC GALOIS EXTENSIONS

SHREERAM S. ABHYANKAR AND NAN GU

(Communicated by Ted Chinburg)

ABSTRACT. We show that simultaneous surface resolution is not always possible in a cyclic extension whose degree is greater than three and is not divisible by the characteristic. This answers a recent question of Ted Chinburg.

1. INTRODUCTION

Let K be a two dimensional algebraic function field over an algebraically closed ground field k. Recall that K/k has a minimal model means that amongst all the nonsingular projective models of K/k there is one which is dominated by all others (basic reference [Ab4] or [Ab5]). Also recall that K/k has a minimal model if and only if it is not a ruled function field, i.e., K is not a simple transcendental field extension of a one dimensional algebraic function field over k (see [Zar]). A finite algebraic field extension L/K is said to have a simultaneous resolution if there exist nonsingular projective models V and W of K/k and L/k, respectively, such that W is the normalization of V in L. Given any positive integer q that is not divisible by the characteristic $\text{char}(K)$ of K and letting \mathbb{Z}_q denote a cyclic group of order q, in [Ab2] it was shown that if $q \leq 3$ and L/K is a \mathbb{Z}_q extension, i.e., a Galois extension whose Galois group is a cyclic group of order q, then it has a simultaneous resolution, whereas if K/k has a minimal model and $q > 3$ with q being a prime number, then there exists a \mathbb{Z}_q extension L/K that has no simultaneous resolution. Here we shall extend this second result to those nonprimes q that are divisible by the square of some prime p. By taking $q = 4$, this answers a question raised by Ted Chinburg at the March 2006 AMS Meeting in New Hampshire to the effect whether every \mathbb{Z}_2 by \mathbb{Z}_2 extension L/K, i.e., a \mathbb{Z}_2 extension L/J of a \mathbb{Z}_2 extension J/K, has a simultaneous resolution. By using a theorem of David Harbater and Florian Pop, we generalize our extended result by replacing \mathbb{Z}_q by its direct sum $H \oplus \mathbb{Z}_q$ with any finite group H. For a related matter, see [AbK].

In Lemma (2.2) of Section 2 we shall give a consequence of the Harbater-Pop Theorem to be used in proving our generalized extended result. In Lemma (2.1) of Section 2 we shall summarize some technical results from our previous papers [Ab2] and [Ab3]. These technical results deal with the structure of the integral closure of a normal noetherian domain in a cyclic extension. They are used in the proof of Theorem (3.1) of Section 3, which gives a sufficient condition for a two dimensional
local domain to be nonregular. Theorem (3.1) is used in proving the special case of Theorem (3.2) of Section 3, which corresponds to our extended result, i.e., the $H = 1$ case of our generalized extended result. The general case of Theorem (3.2), which corresponds to our generalized extended result, then follows by using Lemma (2.2).

2. TWO LEMMAS

Let $M(R)$ denote the maximal ideal of a local ring R. In Lemma (2.1) we summarize some properties of the integral closure of a normal noetherian domain in a cyclic extension. In Lemma (2.2) we give a consequence of the Harbater-Pop theorem.

Lemma 2.1. Let R be a normal noetherian domain with quotient field K, let S be the integral closure of R in a finite algebraic field extension L of K, and let $[L : K] = q$. Assume that q is a unit in R and that L contains a nonzero element z such that $L = K(z)$ and

$$z^q = u \prod_{j=1}^{d} x_j^{a(j)}$$

where u is a unit in R, d is a nonnegative integer, $a(j)$ is an integer such that $\gcd(a(j), q) = 1$ for $1 \leq j \leq d$, and x_1, \ldots, x_d are elements in R such that x_1R, \ldots, x_dR are pairwise distinct minimal ($= \text{height one}$) prime ideals in R. Let $b(i, j)$ and $c(i, j)$ be the unique integers such that

$$b(i, j) = a(j)i + c(i, j)q \quad \text{and} \quad 0 \leq b(i, j) < q.$$

Let

$$z_i = z^i \prod_{j=1}^{d} x_j^{c(i, j)}.$$

Then we have the following:

1. (z_0, \ldots, z_{q-1}) is a free R-basis of S.
2. If R is a local domain and $d \geq 1$, then S is a local domain and for its maximal ideal $M(S)$ we have $M(S) = M(R)S + (z_1, \ldots, z_{q-1})S$ with $S/M(S) = R/M(R)$.
3. If R is a regular local domain and $d \geq 2$, then S is a nonregular local domain.

Proof. For (1) and (2) see Theorem 7 [Ab3]. For (3) see Theorem 6 [Ab2] with the observation that, although in the context of this theorem q is a prime number, the primeness of q was never used in its proof. A different version of (1) and (2) can also be found in Theorems 4 and 5 [Ab2]; see Remark 2 on page 28 of [Ab3].

Lemma 2.2. Let K/k be a two dimensional algebraic function field over an algebraically closed ground field k. For any finite group H, there exists a Galois extension \tilde{L}/K with Galois group H.

Proof. It follows from Theorem 4.4 [Har] or the Corollary to Theorem A [Pop] that given any finite group H and any one dimensional algebraic function field E over an algebraically closed ground field k, there exists a Galois extension F/E whose Galois group is H. The following argument, provided by Harbater and Pop, shows how the desired two-variable existence follows from this.
Given a two dimensional algebraic function field K over k, choose a separating transcendence basis x, y for K over k. So K is a finite separable field extension of $k(x, y)$. Let E be the algebraic closure of $k(x)$ in K. E is finite over $k(x)$, since K is finite over $k(x, y)$ and since $k(x)$ is algebraically closed in $k(x, y)$. Thus E is a one dimensional algebraic function field over k and so, by the one-variable existence theorem, H is the Galois group of a finite extension F of E. Since E is algebraically closed in K and since F is algebraic over E, it follows that F and K are linearly disjoint over E. So the compositum $\tilde{L} = KF$ (in an algebraic closure of K) is a Galois extension of K with Galois group H, completing the proof.

□

3. Two theorems

In Theorem (3.1) we give a sufficient condition for a local domain to be nonregular. In Theorem (3.2) we construct our examples of simultaneous nonresolvability.

Theorem 3.1. Let R be a two dimensional regular local domain, let (X, Y) be generators of its maximal ideal $M(R)$, and let K be its quotient field. Let $R_0 = R$. For all $n > 0$, let $Y_n = Y/X^n$ and let R_n be the localization of the ring $R_{n-1}[Y_n]$ at the maximal ideal in it generated by (X, Y_n). Note that then R_n is a two dimensional regular local domain with quotient field K such that R_n dominates R_{n-1} and (X, Y_n) are generators of $M(R_n)$.

Let q be a positive integer that is a unit in R. Assume that $q = pm$ where p is a prime number and m is a positive integer divisible by p. Assume that K contains q distinct q-th roots of 1. Let L be a splitting field over K of the polynomial of $Z^q - XY^m$. Let S_n be the integral closure of R_n in L.

Then L/K is a \mathbb{Z}_q extension and for every nonnegative integer n, the ring S_n is a two dimensional nonregular local domain.

Proof. Let w be the discrete valuation whose valuation ring is the one dimensional regular local domain obtained by localizing the ring R at the prime ideal in it generated by X. Then $w(XY^m) = 1$ and hence the polynomial $Z^q - XY^m$ is irreducible in $K[Z]$ and L/K is a \mathbb{Z}_q extension. Let $z \in L$ be a root of the said polynomial. Then $z^q = XY^m$ and $L = K(z)$. Let $\overline{X} = z^{1/p}Y$ and $J = K(\overline{X})$. Then $\overline{X}^m = X$ and hence J/K is a \mathbb{Z}_m extension. By (2.1)(2) the integral closure T_n of R_n in J is a two dimensional regular local domain whose maximal ideal $M(T_n)$ is generated by (\overline{X}, Y_n). Also $z^p = \overline{X}^pY = \overline{X}^{1+nm}Y_n$ and, since m is assumed divisible by p, upon letting $\zeta = z/\overline{X}^{nm/p}$ we get $L = J(\zeta)$ with $\zeta^p = \overline{X}Y_n$. Now L/J is a \mathbb{Z}_p extension with $L = J(\zeta)$, and S_n is the integral closure of T_n in L. Therefore by (2.1)(3) we see that S_n is a two dimensional nonregular local domain. □

Theorem 3.2. Let K/k be a two dimensional algebraic function field over an algebraically closed ground field k. Assume that K/k has a minimal model V^*. Let q be a positive integer that is not divisible by $\text{char}(K)$. Assume that $q = pm$ where p is a prime number and m is a positive integer divisible by p. Then, given any finite group H, there exists a Galois extension L'/K with Galois group $H \oplus \mathbb{Z}_q$ such that L'/K has no simultaneous resolution.

Proof. By (2.2) there exists a Galois extension \tilde{L}/K with Galois group H. Take R in (3.1) to be the local ring of a point of V^* that is not ramified in \tilde{L}. Let L' be a compositum of \tilde{L} and L. It is easy to see that L'/K is a Galois extension whose Galois group is $H \oplus \mathbb{Z}_q$.

By [Ab1, Lemma 12], there exists a unique valuation \(v \) of \(K \) dominating \(R_n \) for all \(n \geq 0 \). By construction each \(R_{n+1} \) is the immediate quadratic transform of \(R_n \) along \(v \). Let \(\tilde{v} \) be an extension of \(v \) to \(\tilde{L} \). Let, if possible, \(V \) and \(W \) be nonsingular projective models of \(K/k \) and \(L'/k \), respectively, such that \(W \) is the normalization of \(V \) in \(L' \). Then by the minimality of \(V^* \), \(V \) must dominate \(V^* \). Consequently by [Ab1, Theorem 3] the local ring of the center \(P \) of \(v \) on \(V \) must equal \(R_n \) for some nonnegative integer \(n \). Since \(R_n \) dominates \(R \) and \(R \) is not ramified in \(\tilde{L} \), \(R_n \) is not ramified in \(\tilde{L} \). Let \(\tilde{V} \) be the normalization of \(V \) in \(\tilde{L} \), and \(\tilde{R}_n \) be the local ring of the center \(\tilde{P} \) of \(\tilde{v} \) on \(\tilde{V} \). Then \(\tilde{P} \) lies above \(P \) in \(\tilde{V} \) and \(\tilde{R}_n \) is a two dimensional regular local ring whose maximal ideal \(M(\tilde{R}_n) \) is generated by \((X,Y)\). Now \(L' \) is a \(Z_q \) extension of \(\tilde{L} \) constructed from \(\tilde{L} \) in the same way as \(L \) is constructed from \(K \) in (3.1), and \(W \) is the normalization of \(\tilde{V} \) in \(L' \). By (3.1), the point of \(W \) lying above \(\tilde{P} \) is not a simple point, which is a contradiction.

Remark 3.3. The construction of a \(Z_q \) extension \(L/K \) having no simultaneous resolution does not use the results of Harbater and Pop. Their results plus the fact that a regular system of parameters lifts to a regular system of parameters through an unramified local ring extension allow us to mimic such a construction to get an \(H \otimes \mathbb{Z}_q \) extension. Similar arguments will show that the statement of (3.2) remains true if \(q > 3 \) is a prime number; see [Ab2, Theorem 11] for details.

References

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

E-mail address: ram@cs.purdue.edu

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907

E-mail address: ngu@math.purdue.edu