MINIMAL BOUNDED INDEX SUBGROUP
FOR DEPENDENT THEORIES

SAHARON SHELAH

(Communicated by Julia Knight)

Abstract. For a dependent theory \(T \), in \(\mathfrak{C}_T \) for every type definable group \(G \), the intersection of type definable subgroups with bounded index is a type definable subgroup with bounded index.

§0. Introduction

Assume that \(T \) is a dependent (complete first-order) theory, \(\mathfrak{C} \) is a \(\tilde{\kappa} \)-saturated model of \(T \) (a monster), \(G \) is a type definable (in \(\mathfrak{C} \)) group in \(\mathfrak{C} \) (of course we consider only types of cardinality \(< \tilde{\kappa} \)).

A type definable subgroup \(H \) of \(G \) is call bounded if the index \((G : H) \) is \(< \tilde{\kappa} \). We prove that there is a minimal bounded definable subgroup. The first theorem on this line for \(T \) stable is due to Baldwin and Saxl [BaSx76].

Recently Hrushovski, Peterzil and Pillay [HPP0x] investigated definable groups, \(\sigma \)-minimality and measure. In an earlier work on definable subgroups in \(\sigma \)-minimal \(T \) in Berarducci, Otero, Peterzil and Pillay [BOPP05] the minimal type-definable bounded index theorem and more results are proved for \(\sigma \)-minimal theories.

Hrushovski, in a lecture at the Hebrew University, mentioned that he, Peterzil and Pillay had observed the main result of the current paper, but assuming in addition the existence of an invariant measure on the group in question, and Hrushovski asked if the measure assumption could be removed. So we answer it positively. The current version of their paper [HPP0x] includes an exposition of our proof.

Recent works of the author on dependent theories are [Sh:783] (see §3, §4 on groups) [Sh:863] (e.g., the first-order theory of the \(p \)-adics is strongly\(^1 \) dependent but not strongly\(^2 \) dependent, see end of §1; on strongly\(^2 \) dependent fields, see §5) and [Sh:F705]. This work is continued in [Sh:F753] (getting mainly a parallel result for \(G \) abelian and \(L_{\infty,\kappa} \)-definable subgroups).

I thank Aviv Tatarski and Ilay Kaplan for their very careful checking.

Received by the editors January 22, 2006 and, in revised form, July 19, 2006, July 30, 2006, and October 19, 2006.

2000 Mathematics Subject Classification. Primary 03C45; Secondary 03C60.

The author would like to thank the Israel Science Foundation for partial support of this research (Grant No. 242/03), Publication 876. I would like to thank Alice Leonhardt for the beautiful typing.
§1

1.1 Theorem. Assume T is a dependent (complete first-order) theory, \mathcal{C} a $\bar{\kappa}$-saturated model for T. We consider types of cardinality $< \kappa$.

1) If \oplus below holds, then:

(a) $q(\mathcal{C})$ is a subgroup of $p(\mathcal{C})$,
(b) $q(\mathcal{C})$ is of index $< \bar{\kappa}$,
(c) essentially $q(x)$ is of cardinality $\leq \lambda := |T|^{|\mathcal{C}|}$ (i.e., for some $q'(x) \subseteq q(x)$ of cardinality $\leq \lambda$, $q(x)$ is equivalent to $p(x) \cup q'(x)$),
(d) we can strengthen $(\alpha), (\beta)$ to $q(\mathcal{C})$ is a subgroup of index $\leq 2^\lambda$, where

\[\oplus(a) \quad p(x) \text{ is a type such that } p(\mathcal{C}) \text{ is a group which we call } G \text{ (with some definable operations } x, x^{-1} \text{ and the identity } e_G \text{ which is constant here}).\]

2) There exists some $q' \subseteq q$ over $\text{Dom}(p)$, equivalent to q and such that $|q'| \leq |T| + |\text{Dom}(p)|$. So $|p(\mathcal{C}) : q'(\mathcal{C})| \leq 2^{|\text{Dom}(p)| + |T|}$.

3) If $r_i(x) \in R$ for $i < \lambda^+$, then for some $\alpha < (|T|^{|\mathcal{C}|})^+$ we have $\left(p(x) \cup \bigcup \{ r_i(x) : i < \alpha \} \right)(\mathcal{C}) = \left(p(x) \cup \bigcup \{ r_i(x) : i < \lambda^+ \} \right)(\mathcal{C})$.

Proof. 1) Note

\oplus_1 R is closed under unions of $< \bar{\kappa}$.

$\oplus_2(a)$ If $r(x) \in R$, $r'(x) \subseteq r(x)$ is countable, then there is a countable $r''(x) \subseteq r(x)$ including $r'(x)$ which belongs to R.

(b) If $p(x) \subseteq r(x) \in R$ and $r(x)$ is closed under conjunctions and $r'(x) \subseteq r(x)$ is countable, then we can find $\psi_n(x, b_n)$ for $n < \omega$ such that

(a) $\psi_n(x, b_n) \in r(x)$,
(b) $\psi_{n+1}(x, b_{n+1}) \vdash \psi_n(x, b_n)$,
(c) $\psi_{n+1}(x, b_{n+1}, b_n+1, y) \vdash \psi_n(x^{-1}, b_n, y, b_{n+1}) \wedge \psi_n(x^{-1}, b_{n+1}) \wedge \psi_n(x, y, b_n)$,
(d) $\psi_n(x, b_n) \vdash \varphi_n(x, \bar{a}_n)$, where $\varphi_n(x, \bar{a}_n) : n < \omega$ list r',
(e) $\mathcal{C} \models \psi_n(e_G, b_n)$, actually follows from clause (a).

[Why? Let $r'(x) = \{ \varphi_n(x, \bar{a}_n) : n < \omega \}$ (can use $\varphi_n = (x = x)$). Without loss of generality, $r(x)$ is closed under conjunctions and also $r'(x)$ is. Now we choose $\psi_n(x, b_n)$ by induction on $n < \omega$ such that $\psi_{n+1}(x, b_{n+1}) \wedge \psi_{n+1}(y, b_{n+1}) \vdash \psi_n(xy^{-1}, b_n) \wedge \varphi_n(x, \bar{a}_n) \wedge \psi_n(x, y, b_n)$; notice that trivially $e_G \in \varphi_n(\mathcal{C}, \bar{a}_n) \cap \psi_n(\mathcal{C}, b_n)$. Such a formula exists as $(p(x) \cup r(x)) \cup (p(y) \cup r(y)) \vdash \psi_n(xy^{-1}, b_n) \wedge \varphi_n(x, \bar{a}_n) \wedge \psi_n(x, y, b_n)$.

Now $r''(x) = \{ \varphi_n(x, \bar{a}_n), \psi_n(x, b_n) : n < \omega \}$ is as required in clause (a), $\langle \psi_n(x, b_n) : n < \omega \rangle$ in (b).]

In the conclusion of Theorem 1.1, Clause (a) is obvious.

Assume toward a contradiction that the conclusion $(\beta) + (\gamma)$ fails. So we can choose (c_α, r_α) by induction on $\alpha < \lambda^+$ such that

$\oplus_3(a) \quad c_\alpha \in (p(x) \cup \bigcup \{ r_\beta : \beta < \alpha \})(\mathcal{C})$,
(b) $r_\alpha = \{ \psi_n^\alpha(x, b_n^\alpha) : n < \omega \} \subseteq q$ and $b_n^\alpha \not\in b_{n+1}^\alpha$,
(c) $r_\alpha \in R$, and $\psi_{n+1}(x, b_{n+1}^\alpha) \vdash \psi_n(x, b_n^\alpha)$,
(d) c_α does not realize r_α, in fact $\mathcal{C} \models \neg \psi_0^\alpha(c_\alpha, b_0^\alpha)$, hence $c_\alpha \not\in q(\mathcal{C})$.
Without loss of generality, we can assume that \varnothing.

So by our assumption toward a contradiction, $q_{\alpha}(x) \not\doteq q(x)$; hence there is $r_{\alpha}^*(x) \in R$ such that $q_{\alpha}(x) \not\doteq r_{\alpha}^*$, so $q_{\alpha}(x) \not\doteq \varnothing(x, d_{\alpha})$ for some $\varnothing(x, d_{\alpha}) \in r_{\alpha}^*$. Let $r_{\alpha}(x) = \{\psi_{n+1}(x, b_{\alpha}^0); n < \omega\} \subseteq r_{\alpha}^*(x)$ belong to R and be such that $\varnothing_{\alpha}(x, \bar{d}_{\alpha}) = \psi_{0}(x, b_{\alpha}^{0})$; it exists by $\otimes_2(\alpha)$ above.

Without loss of generality, we can assume $\otimes_4 - \otimes_8$:

\otimes_4 c_{G} is an individual constant, $\bar{y}_{n}^{ \alpha} \subseteq \bar{y}_{n+1}^{ \alpha}$ and $\psi_{n+1}(x, \bar{y}_{n+1}^{ \alpha}) \vdash \psi_{n}(x, \bar{y}_{n}^{ \alpha})$ and $(\psi_{n+1}^{\alpha}(x, \bar{y}_{n+1}^{\alpha}) \wedge \psi_{n+1}(x, \bar{y}_{n+1}^{\alpha})) \vdash (\psi_{n}^{\alpha}(c_{G}, \bar{y}_{n}^{\alpha}) \wedge \psi_{n}^{\alpha}(x, \bar{y}_{n}^{\alpha})).$

[Why? As in the proof of \otimes_2 above, i.e., during the induction in the proof of \otimes_3, we use $\otimes_2(\beta)$ and get $\psi_{n}^{\alpha}(x, \bar{y}_{n}^{\alpha}), b_{n}^{\alpha}$ and without loss of generality $b_{n}^{\alpha} \subseteq \bar{b}_{n+1} \bar{y}_{n}^{\alpha} \bar{y}_{n+1}^{\alpha}$ (as we can change the order and name the free variable and add dummy variables). Now we define $\psi_{n}^{\alpha}(x, \bar{y}_{n}^{\alpha})$ by induction on n by $\psi_{0}^{\alpha}(x, \bar{y}_{0}^{\alpha}) = \psi_{0}^{\alpha}(x, \bar{y}_{0}^{\alpha}), \psi_{n+1}^{\alpha}(x, \bar{y}_{n+1}^{\alpha}) = \psi_{n+1}^{\alpha}(x, \bar{y}_{n+1}^{\alpha})$

\otimes_5 $\psi_{n}^{\alpha}(x, \bar{y}_{n}^{\alpha}) = \psi_{n}^{\alpha}(x, \bar{y}_{n}^{\alpha})$ and $\psi_{n+1}(x, \bar{y}_{n+1}^{\alpha}) \vdash \psi_{n}(x, \bar{y}_{n}^{\alpha})$. So clearly $\{\psi_{n}^{\alpha}(x, \bar{y}_{n}^{\alpha}); n < \omega\}$ satisfies \otimes_4 and $\mathcal{C} \models (\forall x)[\psi_{n}^{\alpha}(x, \bar{b}_{n}^{\alpha}) \equiv \psi_{n}^{\alpha}(x, \bar{b}_{n}^{\alpha})].$ So renaming we are done.] \otimes_5 $\psi_{n}^{\alpha}(x, \bar{y}_{n}^{\alpha}) = \psi_{n}(x, \bar{y}_{n}^{\alpha})$ and $\psi_{n+1}(x, \bar{y}_{n+1}^{\alpha}) \vdash \psi_{n}(x, \bar{y}_{n}^{\alpha})$.

[Why? By the pigeon hole principle.] \otimes_6 $\{c_{\alpha}\bar{a}_{\alpha} ; \alpha < \lambda^{+}\}$ is an indiscernible sequence over $\text{Dom}(p)$ where $\bar{a}_{\alpha} = \cup\{b_{n}^{\alpha} ; n < \omega\}b_{1}^{\alpha}b_{2}^{\alpha}b_{3}^{\alpha} \ldots$; note that by clause (b) of \otimes_3 we have $\bar{b}_{n}^{\alpha} = \bar{a}_{\alpha} \upharpoonright k_{n}$. [Why? By the Ramsey theorem and compactness.] \otimes_7 If $\alpha < \beta < \gamma$, then $c_{\alpha}c_{\beta}^{-1} \in r_{\gamma}(\mathcal{C}).$

[Why? By the indiscernibility, without loss of generality, γ is infinite, so $\gamma \geq \omega$ and $\{c_{i} ; i < \gamma\}$ is an indiscernible sequence over $\text{Dom}(p) \cup \bar{b}_{\gamma}$ of elements of $p(\mathcal{C})$ pairwise nonequivalent modulo the subgroup $G_{\gamma} = (p \cup r_{\gamma})(\mathcal{C})$. Then we can extend it to $\{\bar{c}_{i} ; i < \bar{\gamma}\}$, an indiscernible sequence over $\text{Dom}(p) \cup \bar{b}_{\gamma}$ and arrive at $\alpha < \beta \Rightarrow c_{\alpha}c_{\beta}^{-1} \notin G_{\gamma} \Rightarrow \bar{c}_{\beta}c_{\alpha}^{-1} \notin G_{\gamma}$ so $\{c_{\alpha}G_{\gamma} ; \alpha < \bar{\gamma}\}$ are pairwise distinct (equivalently $\langle G_{\gamma}c_{\alpha} ; \alpha < \bar{\gamma}\rangle$ are pairwise distinct), a contradiction.] \otimes_8 $c_{\alpha} \in r_{\beta}(\mathcal{C})$ iff $\alpha \neq \beta$. [Why? Let $c_{\alpha}^{*} = c_{2\alpha+1}(c_{2\alpha})^{-1}$,

$r_{\alpha}^{*} = r_{2\alpha}.$

So:

(i) If $\beta < \alpha$, then $c_{\alpha}^{*} \in (p \cup r_{\beta}^{*})(\mathcal{C})$, because $c_{2\alpha+1}, c_{2\alpha}$ belong to the subgroup $(p \cup r_{2\beta})(\mathcal{C})$ by clause (a) of \otimes_3.

(ii) If $\beta > \alpha$, then c_{α}^{*} belongs to $(p \cup r_{\beta}^{*})(\mathcal{C})$ by \otimes_7.

(iii) If $\beta = \alpha$, then c_{α}^{*} does not belong to $(p \cup r_{\beta}^{*})(\mathcal{C})$ because:
(α) it is a subgroup,
(β) $c_{2\alpha+1}$ belongs to it by clause (a) of \otimes_3 and $c_{2\alpha}$ does not belong to it by clause (e) of \otimes_3.

Let $\bar{a}_n = \bar{a}_{2\alpha+1}, \bar{b}_{n,\ast} = \bar{b}_{2\alpha}$ retaining the same ψ's. So we have obtained an example as required in \otimes_8 (not losing the other demands).]

For some $n < \omega$ for every α, we have if $d_1, d_2 \in (p \cup r_\alpha)(\mathfrak{C}),$ then $d_1 c_\alpha d_2 \notin \psi_n(\mathfrak{C}, b_\alpha)$; without loss of generality, $n = 1$.

[Why? Fix α. If this holds for some $\psi_n(-, \bar{b}_\alpha)$, by indiscernibility, renaming the φ_i's, this is O.K. Otherwise for each $n < \omega$ there are $d_1^n, d_2^n \in (p \cup r_\alpha)(\mathfrak{C})$ such that $\mathfrak{C} \models \psi_n(d_1^n c_\alpha d_2^n, \bar{b}_\alpha)$. By compactness for some $d_1^n, d_2^n \in (p \cup r_\alpha)(\mathfrak{C})$ we have $\models \psi_n(d_1^n c_\alpha d_2^n, \bar{b}_\alpha)$ for every $n < \omega$. So $d_1^n c_\alpha d_2^n$ belongs to the subgroup $(p \cup r_\alpha)(\mathfrak{C})$, but also d_1^n, d_2^n belongs to it; hence c_α belongs, a contradiction. Alternatively, note that $n = 2$ is O.K.: let $c' = d_1 c_2 d_2$ and assume toward a contradiction that $c' \in \psi_2(\mathfrak{C}, \bar{b}_\alpha)$ and let $d_1' = (d_1)^{-1}, d_2' = (d_2)^{-1}$, so clearly $d_1', d_2' \in (p \cup r_\alpha)(\mathfrak{C}) \subseteq \psi_2(\mathfrak{C}, \bar{b}_\alpha)$. Now by \otimes_4 as $d_1', c' \in \psi_2(\mathfrak{C}, b_\alpha)$ it follows that $d_2(c')^{-1} \in \psi_1(\mathfrak{C}, \bar{b}_\alpha)$. As $d_1, d_2(c')^{-1} \in \psi_1(\mathfrak{C}, \bar{b}_\alpha)$ by \otimes_4 we have $d_1'(d_2(c')^{-1})^{-1} \in \psi_0(\mathfrak{C}, b_\alpha)$.

But $c' = d_1' c_\alpha d_2'$; hence $c_\alpha = d_1' ((d_2')^{-1}(c')^{-1})^{-1} = d_1' (d_2(c')^{-1})^{-1},$ but $d_1' (d_2(c')^{-1})^{-1} \in \psi_0(\mathfrak{C}, b_\alpha)$ by the previous sentence, whereas $c_\alpha \notin \psi_0(\mathfrak{C}, b_\alpha)$ by $\otimes_3(e)$, a contradiction.]

If $w = \{i_1, \ldots, i_n\}, i_1 < \ldots < i_n < \lambda^+$, and $d_w := c_{i_1} c_{i_2} \ldots c_{i_n} \in G$ and $\alpha < \lambda^+$, then $= \varphi \{d_w, \bar{b}_\alpha\} \iff \alpha \notin w$.

[Why? If $\alpha \in w$, let k be such that $\alpha = i_k$, so $c_{i_1}, \ldots, c_{i_{k-1}} \in (p \cup r_\alpha)(\mathfrak{C})$ by \otimes_8 and similarly $c_{i_{k+1}} \ldots c_{i_n} \in (p \cup r_\alpha)(\mathfrak{C})$; hence $d_w = (c_{i_1} \ldots c_{i_k}) c_{i_k} (c_{i_{k+1}} \ldots c_{i_n}) \notin \mathfrak{C}$]

by \otimes_9.

Second, if $\alpha \notin w$, this holds by \otimes_8 as $\{c_{i_\ell} : \ell < n\}$ is included in the subgroup $(p \cup r_\alpha)(\mathfrak{C})$.

So we get a contradiction to “T is dependent”; hence clauses $(\beta), (\gamma)$ hold. Also clause (δ) follows by the following observation:

Observation: If $r(x) \in \mathfrak{C}$ and $|r(x)| \leq \theta$, then $(p(\mathfrak{C}) : p(\cup r)(\mathfrak{C})) \leq 2^\theta$ (except for being just finite when θ is finite).
It follows that if \(c_1, c_2 \in p(\mathcal{C}) \) are such that \(\text{tp}(c_1, \text{Dom}(p)) = \text{tp}(c_2, \text{Dom}(p)) \), then \(c_1 \in q(\mathcal{C}) \) if and only if \(c_2 \in q(\mathcal{C}) \). Let \(P := \{ \text{tp}(b, \text{Dom}(p)) : b \in q(\mathcal{C}) \} \), \(P(\mathcal{C}) := \bigcup \{ r(\mathcal{C}) : r \in P \} \). Then by the above explanation, \(P(\mathcal{C}) \subseteq q(\mathcal{C}) \). By definition, \(q(\mathcal{C}) \subseteq p(\mathcal{C}) \), so they are equal. Let \(q_{**} = \bigcap \{ r : r \in P \} \), so we have \(q(\mathcal{C}) \subseteq q_{**}(\mathcal{C}) \).

If they are equal, then we are done. Otherwise take \(c_1 \in q_{**}(\mathcal{C}) \setminus q(\mathcal{C}) \). Without loss of generality, let \(\psi(x, \bar{d}) \in q \) be such that \(|\psi| = \neg \psi(c_1, \bar{d}) \).

By definition of \(P \) and \(c_1 \), for each \(\theta(x, \bar{e}) \in \text{tp}(c_1, \text{Dom}(p)) \) there exists some \(p_{\theta(x,\bar{e})} \in P \) such that \(\theta(x, \bar{e}) \in p(x, \bar{e}) \) and therefore some \(c_{\theta(x,\bar{e})} \in q(\mathcal{C}) \) satisfies \(\theta(x, \bar{e}) \). So \(\text{tp}(c_1, \text{Dom}(p)) \cup q'(x) \) is finitely satisfiable and is therefore realized by some \(c_2 \). Thus \(\text{tp}(c_1, \text{Dom}(p)) = \text{tp}(c_2, \text{Dom}(p)) \), but \(c_1 \notin q'(\mathcal{C}) = q(\mathcal{C}) \) and \(c_2 \in (p \cup q')(\mathcal{C}) \), a contradiction.

3) By the proof of part (1). \(\square_{1.1} \)

References

THE HEBREW UNIVERSITY OF JERUSALEM, EINSTEIN INSTITUTE OF MATHEMATICS, EDMOND J. SAFRA CAMPUS, GIVAT RAM, JERUSALEM 91904, ISRAEL

Current address: Department of Mathematics, Hill Center-Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, New Jersey 08854-8019