Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Only `free' measures are admissable on $ F(S)$ when the inner product space $ S$ is incomplete


Authors: D. Buhagiar and E. Chetcuti
Journal: Proc. Amer. Math. Soc. 136 (2008), 919-922
MSC (2000): Primary 46C05, 46C15; Secondary 46L30
DOI: https://doi.org/10.1090/S0002-9939-07-08982-4
Published electronically: November 30, 2007
MathSciNet review: 2361864
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Using elementary arguments and without having to recall the Gleason Theorem, we prove that the existence of a nonsingular measure on the lattice of orthogonally closed subspaces of an inner product space $ S$ is a sufficient (and of course, a necessary) condition for $ S$ to be a Hilbert space.


References [Enhancements On Off] (What's this?)

  • 1. I. Amemiya and H. Araki, A remark on Piron's paper, Publ. Res. Inst. Math. Sci., Kyoto Univ. Ser. A 2 (1966-67), 423-427. MR 0213266 (35:4130)
  • 2. E. Chetcuti and A. Dvurečenskij, A finitely additive state criterion for the completeness of inner product spaces, Letters Math. Phys. 64 (2003), 221-227. MR 2009260 (2004j:46029)
  • 3. -, The state-space of the lattice of orthogonally closed subspaces, Glasgow Math. J. 47 (2005), 213-220. MR 2200969 (2006i:46034)
  • 4. A. Dvurečenskij, Gleason's Theorem and Its Applications, Kluwer Acad. Publ., Dordrecht, Ister Science Press, Bratislava, 1992.
  • 5. A. Dvurečenskij, T. Neubrunn and S. Pulmannová, Finitely additive states and completeness of inner product spaces, Found. Phys. 20 (1990), 1091-1102. MR 1078957 (92a:46026)
  • 6. A. M. Gleason, Measures on the closed subspaces of a Hilbert space, J. Math. Mech. 6 (1957), 885-893. MR 0096113 (20:2609)
  • 7. S. P. Gudder, Inner product spaces, Amer. Math. Monthly 82 (1975), 251-252. MR 0420234 (54:8248)
  • 8. J. Hamhalter and P. Pták, A completeness criterion for inner product spaces, Bull. London Math. Soc. 19 (1987), 259-263. MR 879514 (88a:46019)
  • 9. J. Hamhalter, Quantum Measure Theory, Kluwer Academic Publishers, Dordrecht, Boston, London, 2003. MR 2015280 (2004j:46085)
  • 10. F. Maeda and S. Maeda, Theory of Symmetric Lattices, Springer-Verlag, Berlin, 1970. MR 0282889 (44:123)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46C05, 46C15, 46L30

Retrieve articles in all journals with MSC (2000): 46C05, 46C15, 46L30


Additional Information

D. Buhagiar
Affiliation: Department of Mathematics, Faculty of Science, University of Malta, Msida MSD.06, Malta
Email: david.buhagiar@um.edu.mt

E. Chetcuti
Affiliation: Department of Mathematics, Junior College, University of Malta, Msida MSD.06, Malta
Email: emanuel.chetcuti@um.edu.mt

DOI: https://doi.org/10.1090/S0002-9939-07-08982-4
Received by editor(s): May 24, 2006
Received by editor(s) in revised form: October 11, 2006
Published electronically: November 30, 2007
Communicated by: David Preiss
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society