Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A sharp bound for the Stein-Wainger oscillatory integral


Author: Ioannis R. Parissis
Journal: Proc. Amer. Math. Soc. 136 (2008), 963-972
MSC (2000): Primary 42A50; Secondary 42A45
DOI: https://doi.org/10.1090/S0002-9939-07-09013-2
Published electronically: November 16, 2007
MathSciNet review: 2361870
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{P}_d$ denote the space of all real polynomials of degree at most $ d$. It is an old result of Stein and Wainger that

$\displaystyle \sup_ {P\in\mathcal{P}_d} \bigg\vert p.v.\int_{\mathbb{R}} {e^{iP(t)}\frac{dt}{t}} \bigg\vert\leq C_d$

for some constant $ C_d$ depending only on $ d$. On the other hand, Carbery, Wainger and Wright claim that the true order of magnitude of the above principal value integral is $ \log d$. We prove that

$\displaystyle \sup_ {P\in\mathcal{P}_d}\bigg\vert p.v. \int_{\mathbb{R}}{e^{iP(t)}\frac{dt}{t}}\bigg\vert\sim \log{d}.$


References [Enhancements On Off] (What's this?)

  • 1. G. I. Arhipov, A. A. Karacuba, and V. N. Cubarikov, Trigonometric integrals, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 5, 971-1003, 1197. MR 552548 (81f:10050)
  • 2. Anthony Carbery, Stephen Wainger, and James Wright, Personal communication, 2005.
  • 3. E. M. Stein, Oscillatory integrals in Fourier analysis, Beijing lectures in harmonic analysis (Beijing, 1984), Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 307-355. MR 864375 (88g:42022)
  • 4. Elias M. Stein and Stephen Wainger, The estimation of an integral arising in multiplier transformations, Studia Math. 35 (1970), 101-104. MR 0265995 (42:904)
  • 5. Ivan Matveevic Vinogradov, Selected works, Springer-Verlag, Berlin, 1985, With a biography by K. K. Mardzhanishvili, Translated from the Russian by Naidu Psv [P. S. V. Naidu], Translation edited by Yu. A. Bakhturin. MR 807530 (87a:01042)
  • 6. Stephen Wainger, Averages and singular integrals over lower-dimensional sets, Beijing lectures in harmonic analysis (Beijing, 1984), Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 357-421. MR 864376 (89a:42026)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42A50, 42A45

Retrieve articles in all journals with MSC (2000): 42A50, 42A45


Additional Information

Ioannis R. Parissis
Affiliation: Department of Mathematics, University of Crete, Knossos Avenue, 71409 Iraklio, Crete, Greece
Email: ypar@math.uoc.gr

DOI: https://doi.org/10.1090/S0002-9939-07-09013-2
Received by editor(s): November 20, 2006
Published electronically: November 16, 2007
Communicated by: Michael T. Lacey
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society