A sharp bound for the Stein-Wainger oscillatory integral
Author:
Ioannis R. Parissis
Journal:
Proc. Amer. Math. Soc. 136 (2008), 963-972
MSC (2000):
Primary 42A50; Secondary 42A45
DOI:
https://doi.org/10.1090/S0002-9939-07-09013-2
Published electronically:
November 16, 2007
MathSciNet review:
2361870
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Let denote the space of all real polynomials of degree at most
. It is an old result of Stein and Wainger that





- 1. G. I. Arhipov, A. A. Karacuba, and V. N. Cubarikov, Trigonometric integrals, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 5, 971-1003, 1197. MR 552548 (81f:10050)
- 2. Anthony Carbery, Stephen Wainger, and James Wright, Personal communication, 2005.
- 3. E. M. Stein, Oscillatory integrals in Fourier analysis, Beijing lectures in harmonic analysis (Beijing, 1984), Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 307-355. MR 864375 (88g:42022)
- 4. Elias M. Stein and Stephen Wainger, The estimation of an integral arising in multiplier transformations, Studia Math. 35 (1970), 101-104. MR 0265995 (42:904)
- 5. Ivan Matveevic Vinogradov, Selected works, Springer-Verlag, Berlin, 1985, With a biography by K. K. Mardzhanishvili, Translated from the Russian by Naidu Psv [P. S. V. Naidu], Translation edited by Yu. A. Bakhturin. MR 807530 (87a:01042)
- 6. Stephen Wainger, Averages and singular integrals over lower-dimensional sets, Beijing lectures in harmonic analysis (Beijing, 1984), Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 357-421. MR 864376 (89a:42026)
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42A50, 42A45
Retrieve articles in all journals with MSC (2000): 42A50, 42A45
Additional Information
Ioannis R. Parissis
Affiliation:
Department of Mathematics, University of Crete, Knossos Avenue, 71409 Iraklio, Crete, Greece
Email:
ypar@math.uoc.gr
DOI:
https://doi.org/10.1090/S0002-9939-07-09013-2
Received by editor(s):
November 20, 2006
Published electronically:
November 16, 2007
Communicated by:
Michael T. Lacey
Article copyright:
© Copyright 2007
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.