Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A sharp bound for the Stein-Wainger oscillatory integral


Author: Ioannis R. Parissis
Journal: Proc. Amer. Math. Soc. 136 (2008), 963-972
MSC (2000): Primary 42A50; Secondary 42A45
Published electronically: November 16, 2007
MathSciNet review: 2361870
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{P}_d$ denote the space of all real polynomials of degree at most $ d$. It is an old result of Stein and Wainger that

$\displaystyle \sup_ {P\in\mathcal{P}_d} \bigg\vert p.v.\int_{\mathbb{R}} {e^{iP(t)}\frac{dt}{t}} \bigg\vert\leq C_d$

for some constant $ C_d$ depending only on $ d$. On the other hand, Carbery, Wainger and Wright claim that the true order of magnitude of the above principal value integral is $ \log d$. We prove that

$\displaystyle \sup_ {P\in\mathcal{P}_d}\bigg\vert p.v. \int_{\mathbb{R}}{e^{iP(t)}\frac{dt}{t}}\bigg\vert\sim \log{d}.$


References [Enhancements On Off] (What's this?)

  • 1. G. I. Arhipov, A. A. Karacuba, and V. N. Čubarikov, Trigonometric integrals, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 5, 971–1003, 1197 (Russian). MR 552548
  • 2. Anthony Carbery, Stephen Wainger, and James Wright, Personal communication, 2005.
  • 3. E. M. Stein, Oscillatory integrals in Fourier analysis, Beijing lectures in harmonic analysis (Beijing, 1984) Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 307–355. MR 864375
  • 4. Elias M. Stein and Stephen Wainger, The estimation of an integral arising in multiplier transformations., Studia Math. 35 (1970), 101–104. MR 0265995
  • 5. Ivan Matveevič Vinogradov, Selected works, Springer-Verlag, Berlin, 1985. With a biography by K. K. Mardzhanishvili; Translated from the Russian by Naidu Psv [P. S. V. Naidu]; Translation edited by Yu. A. Bakhturin. MR 807530
  • 6. Stephen Wainger, Averages and singular integrals over lower-dimensional sets, Beijing lectures in harmonic analysis (Beijing, 1984) Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 357–421. MR 864376

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42A50, 42A45

Retrieve articles in all journals with MSC (2000): 42A50, 42A45


Additional Information

Ioannis R. Parissis
Affiliation: Department of Mathematics, University of Crete, Knossos Avenue, 71409 Iraklio, Crete, Greece
Email: ypar@math.uoc.gr

DOI: https://doi.org/10.1090/S0002-9939-07-09013-2
Received by editor(s): November 20, 2006
Published electronically: November 16, 2007
Communicated by: Michael T. Lacey
Article copyright: © Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.