Limit cycles for cubic systems with a symmetry of order 4 and without infinite critical points
Authors:
M. J. Álvarez, A. Gasull and R. Prohens
Journal:
Proc. Amer. Math. Soc. 136 (2008), 10351043
MSC (2000):
Primary 34C07, 34C14; Secondary 34C23, 37C27
Published electronically:
November 30, 2007
MathSciNet review:
2361879
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper we study those cubic systems which are invariant under a rotation of radians. They are written as where is complex, the time is real, and , are complex parameters. When they have some critical points at infinity, i.e. , it is wellknown that they can have at most one (hyperbolic) limit cycle which surrounds the origin. On the other hand when they have no critical points at infinity, i.e. there are examples exhibiting at least two limit cycles surrounding nine critical points. In this paper we give two criteria for proving in some cases uniqueness and hyperbolicity of the limit cycle that surrounds the origin. Our results apply to systems having a limit cycle that surrounds either 1, 5 or 9 critical points, the origin being one of these points. The key point of our approach is the use of Abel equations.
 1.
A.
A. Andronov, E.
A. Leontovich, I.
I. Gordon, and A.
G. Maĭer, Qualitative theory of secondorder dynamic
systems, Halsted Press (A division of John Wiley & Sons), New
YorkToronto, Ont., 1973. Translated from the Russian by D. Louvish. MR 0350126
(50 #2619)
 2.
V.
Arnol′d, Chapitres supplémentaires de la
théorie des équations différentielles ordinaires,
“Mir”, Moscow, 1980 (French). Translated from the Russian by
Djilali Embarek. MR 626685
(83a:34003)
 3.
Marc
Carbonell and Jaume
Llibre, Limit cycles of polynomial systems with homogeneous
nonlinearities, J. Math. Anal. Appl. 142 (1989),
no. 2, 573–590. With the collaboration of Bartomeu Coll. MR 1014597
(91d:58205), http://dx.doi.org/10.1016/0022247X(89)900218
 4.
Chong
Qing Cheng and Yi
Sui Sun, Metamorphoses of phase portraits of vector field in the
case of symmetry of order 4, J. Differential Equations
95 (1992), no. 1, 130–139. MR 1142279
(93a:58144), http://dx.doi.org/10.1016/00220396(92)90045O
 5.
CHERKAS, L.A. Number of limit cycles of an autonomous secondorder system. Diff. Equations, 5 (1976), 666668.
 6.
ShuiNee
Chow, Cheng
Zhi Li, and Duo
Wang, Normal forms and bifurcation of planar vector fields,
Cambridge University Press, Cambridge, 1994. MR 1290117
(95i:58161)
 7.
B.
Coll, A.
Gasull, and R.
Prohens, Differential equations defined by the sum of two
quasihomogeneous vector fields, Canad. J. Math. 49
(1997), no. 2, 212–231. MR 1447489
(98j:34041), http://dx.doi.org/10.4153/CJM19970110
 8.
A.
Gasull and J.
Llibre, Limit cycles for a class of Abel equations, SIAM J.
Math. Anal. 21 (1990), no. 5, 1235–1244. MR 1062402
(91e:34036), http://dx.doi.org/10.1137/0521068
 9.
John
Guckenheimer, Phase portraits of planar vector fields: computer
proofs, Experiment. Math. 4 (1995), no. 2,
153–165. MR 1377416
(97g:34041)
 10.
E.
I. Horozov, Versal deformations of equivariant vector fields for
cases of symmetry of order 2 and 3, Trudy Sem. Petrovsk.
5 (1979), 163–192 (Russian). MR 549627
(80k:58079)
 11.
Bernd
Krauskopf, Bifurcation sequences at 1:4 resonance: an
inventory, Nonlinearity 7 (1994), no. 3,
1073–1091. MR 1275542
(95d:58097)
 12.
N.
G. Lloyd, A note on the number of limit cycles in certain
twodimensional systems, J. London Math. Soc. (2) 20
(1979), no. 2, 277–286. MR 551455
(80k:34039), http://dx.doi.org/10.1112/jlms/s220.2.277
 13.
A.
I. Neĭshtadt, Bifurcations of the phase pattern of an
equation system arising in the problem of stability loss of
selfoscillations close to 1:4 resonance; Russian transl., J. Appl.
Math. Mech. 42 (1978), no. 5, 896–907 (1979).
MR 620880
(83e:58064)
 14.
P.
Yu, M.
Han, and Y.
Yuan, Analysis on limit cycles of 𝑍_{𝑞}equivariant
polynomial vector fields with degree 3 or 4, J. Math. Anal. Appl.
322 (2006), no. 1, 51–65. MR 2238147
(2007f:34060), http://dx.doi.org/10.1016/j.jmaa.2005.08.068
 15.
André
Zegeling, Equivariant unfoldings in the case of symmetry of order
4, Serdica 19 (1993), no. 1, 71–79. MR 1241150
(94i:58165)
 1.
 ANDRONOV, A.A.; LEONTOVICH, E.A.; GORDON, I.I.; MAIER, A.L., ``Qualitative theory of secondorder dynamic systems'', John Wiley and Sons, New York, 1973. MR 0350126 (50:2619)
 2.
 ARNOLD, V., ``Chapitres supplémentaires de la théorie des équations différentielles ordinaires'', Éditions MirMoscou, 1980. MR 626685 (83a:34003)
 3.
 CARBONELL, M.; LLIBRE, J. Limit cycles of polynomial systems with homogeneous nonlinearities. J. Math. Anal. Appl., 142 (1989), 573590. MR 1014597 (91d:58205)
 4.
 CHENG, C.Q.; SUN, Y.S. Metamorphoses of phase portraits of vector filed in the case of symmetry of order 4. J. of Diff. Equations, 95 (1992), 130139. MR 1142279 (93a:58144)
 5.
 CHERKAS, L.A. Number of limit cycles of an autonomous secondorder system. Diff. Equations, 5 (1976), 666668.
 6.
 CHOW, S.N.; LI, C.; WANG, D., ``Normal Forms and Bifurcation of Planar Vector Fields'', Cambridge University Press, 1994. MR 1290117 (95i:58161)
 7.
 COLL, B.; GASULL, A.; PROHENS, R. Differential equations defined by the sum of two quasihomogeneous vector fields. Can. J. Math., 49 (1997), 212231. MR 1447489 (98j:34041)
 8.
 GASULL, A.; LLIBRE, J. Limit cycles for a class of Abel Equation. SIAM J. Math. Anal., 21 (1990), 12351244. MR 1062402 (91e:34036)
 9.
 GUCKENHEIMER, J. Phase portraits of planar vector fields: computer proofs. Exp. Mathematics, 4 (1995), 153165. MR 1377416 (97g:34041)
 10.
 HOROZOV, E. Versal deformations of equivariant vector fields for the case of symmetries of order 2 and 3. Trudy Sem. Pet., 5 (1979), 163192 (in Russian). MR 549627 (80k:58079)
 11.
 KRAUSKOPF, B. Bifurcation sequences at 1:4 resonance: an inventory. Nonlinearity, 7 (1994), 10731091. MR 1275542 (95d:58097)
 12.
 LLOYD, N.G. A note on the number of limit cycles in certain twodimensional systems. J. London Math. Soc., 20 (1979), 277286. MR 551455 (80k:34039)
 13.
 NEISHTADT, A.I. Bifurcation of the phase pattern of an equation system arising in the problem of stability loss of selfoscillations close to 1:4 resonance (in Russian). J. Appl. Math. Mech., 42 (1978), 830840. MR 620880 (83e:58064)
 14.
 YU, P.; HAN, M.; YUAN, Y. Analysis on limit cycles of equivariant polynomial vector fields with degree 3 or 4. J. Math. Anal. Appl., 322 (2006), 5165. MR 2238147 (2007f:34060)
 15.
 ZEGELING, A. Equivariant unfoldings in the case of symmetry of order 4. Serdica, 19 (1993), 7179. MR 1241150 (94i:58165)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
34C07,
34C14,
34C23,
37C27
Retrieve articles in all journals
with MSC (2000):
34C07,
34C14,
34C23,
37C27
Additional Information
M. J. Álvarez
Affiliation:
Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears, 07122, Palma de Mallorca, Spain
Email:
chus.alvarez@uib.es
A. Gasull
Affiliation:
Departament de Matemàtiques, Edifici C, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
Email:
gasull@mat.uab.cat
R. Prohens
Affiliation:
Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears, 07122, Palma de Mallorca, Spain
Email:
rafel.prohens@uib.cat
DOI:
http://dx.doi.org/10.1090/S0002993907090727
PII:
S 00029939(07)090727
Keywords:
Planar autonomous ordinary differential equations,
symmetric cubic systems,
limit cycles
Received by editor(s):
March 24, 2006
Received by editor(s) in revised form:
January 16, 2007
Published electronically:
November 30, 2007
Additional Notes:
The first two authors were partially supported by grants MTM200506098C021 and 2005SGR00550. The third author was supported by grant UIB2006. This paper was also supported by the CRM Research Program: On Hilbert’s 16th Problem.
Communicated by:
Carmen C. Chicone
Article copyright:
© Copyright 2007 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
