Projective normality of ruled surfaces

Author:
Euisung Park

Journal:
Proc. Amer. Math. Soc. **136** (2008), 839-847

MSC (2000):
Primary 14J26

Published electronically:
November 30, 2007

MathSciNet review:
2361855

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this article we study normal generation of irrational ruled surfaces. When is a smooth curve of genus , Green and Lazarsfeld proved that a very ample line bundle Pic with deg Cliff is normally generated where Cliff denotes the Clifford index of the curve (Green and Lazarsfeld, 1986). We generalize this to line bundles on a ruled surface over .

**[B1]**David C. Butler,*Normal generation of vector bundles over a curve*, J. Differential Geom.**39**(1994), no. 1, 1–34. MR**1258911****[B2]**David C. Butler,*Global sections and tensor products of line bundles over a curve*, Math. Z.**231**(1999), no. 3, 397–407. MR**1704986**, 10.1007/PL00004739**[C]**G. Castelnuovo,*Sui multipli di une serie lineare di gruppi di punti appartenente ad une curva algebraic*, Rend. Circ. Mat. Palermo (2) 7 (1893), 89-110.**[FP1]**Luis Fuentes-García and Manuel Pedreira,*The projective theory of ruled surfaces*, Note Mat.**24**(2005), no. 1, 25–63. MR**2199622****[FP2]**Luis Fuentes García and Manuel Pedreira,*Canonical geometrically ruled surfaces*, Math. Nachr.**278**(2005), no. 3, 240–257. MR**2110530**, 10.1002/mana.200310238**[GP1]**Francisco Javier Gallego and B. P. Purnaprajna,*Normal presentation on elliptic ruled surfaces*, J. Algebra**186**(1996), no. 2, 597–625. MR**1423277**, 10.1006/jabr.1996.0388**[GP2]**Francisco Javier Gallego and B. P. Purnaprajna,*Some results on rational surfaces and Fano varieties*, J. Reine Angew. Math.**538**(2001), 25–55. MR**1855753**, 10.1515/crll.2001.068**[GL]**Mark Green and Robert Lazarsfeld,*On the projective normality of complete linear series on an algebraic curve*, Invent. Math.**83**(1986), no. 1, 73–90. MR**813583**, 10.1007/BF01388754**[Ha]**Robin Hartshorne,*Algebraic geometry*, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR**0463157****[Ho1]**Yuko Homma,*Projective normality and the defining equations of ample invertible sheaves on elliptic ruled surfaces with 𝑒≥0*, Natur. Sci. Rep. Ochanomizu Univ.**31**(1980), no. 2, 61–73. MR**610593****[Ho2]**Yuko Homma,*Projective normality and the defining equations of an elliptic ruled surface with negative invariant*, Natur. Sci. Rep. Ochanomizu Univ.**33**(1982), no. 1-2, 17–26. MR**703959****[L]**Robert Lazarsfeld,*Positivity in algebraic geometry. I*, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR**2095471****[M1]**David Mumford,*Lectures on curves on an algebraic surface*, With a section by G. M. Bergman. Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, N.J., 1966. MR**0209285****[P1]**Euisung Park,*On higher syzygies of ruled surfaces*, Trans. Amer. Math. Soc.**358**(2006), no. 8, 3733–3749. MR**2218997**, 10.1090/S0002-9947-05-03875-4**[P2]**Euisung Park,*On higher syzygies of ruled surfaces. II*, J. Algebra**294**(2005), no. 2, 590–608. MR**2183366**, 10.1016/j.jalgebra.2005.05.022

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
14J26

Retrieve articles in all journals with MSC (2000): 14J26

Additional Information

**Euisung Park**

Affiliation:
Department of Mathematics, Korea University, Seoul 136-701, Republic of Korea

Email:
euisungpark@korea.ac.kr

DOI:
https://doi.org/10.1090/S0002-9939-07-09121-6

Received by editor(s):
July 15, 2005

Received by editor(s) in revised form:
February 19, 2007

Published electronically:
November 30, 2007

Communicated by:
Michael Stillman

Article copyright:
© Copyright 2007
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.